當前位置: 首頁>>代碼示例>>Python>>正文


Python FunctionTransformer.inverse_transform方法代碼示例

本文整理匯總了Python中sklearn.preprocessing.FunctionTransformer.inverse_transform方法的典型用法代碼示例。如果您正苦於以下問題:Python FunctionTransformer.inverse_transform方法的具體用法?Python FunctionTransformer.inverse_transform怎麽用?Python FunctionTransformer.inverse_transform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.preprocessing.FunctionTransformer的用法示例。


在下文中一共展示了FunctionTransformer.inverse_transform方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_inverse_transform

# 需要導入模塊: from sklearn.preprocessing import FunctionTransformer [as 別名]
# 或者: from sklearn.preprocessing.FunctionTransformer import inverse_transform [as 別名]
def test_inverse_transform():
    X = np.array([1, 4, 9, 16]).reshape((2, 2))

    # Test that inverse_transform works correctly
    F = FunctionTransformer(
            func=np.sqrt,
            inverse_func=np.around, inv_kw_args=dict(decimals=3))
    testing.assert_array_equal(
            F.inverse_transform(F.transform(X)),
            np.around(np.sqrt(X), decimals=3))
開發者ID:0664j35t3r,項目名稱:scikit-learn,代碼行數:12,代碼來源:test_function_transformer.py

示例2: test_check_inverse

# 需要導入模塊: from sklearn.preprocessing import FunctionTransformer [as 別名]
# 或者: from sklearn.preprocessing.FunctionTransformer import inverse_transform [as 別名]
def test_check_inverse():
    X_dense = np.array([1, 4, 9, 16], dtype=np.float64).reshape((2, 2))

    X_list = [X_dense,
              sparse.csr_matrix(X_dense),
              sparse.csc_matrix(X_dense)]

    for X in X_list:
        if sparse.issparse(X):
            accept_sparse = True
        else:
            accept_sparse = False
        trans = FunctionTransformer(func=np.sqrt,
                                    inverse_func=np.around,
                                    accept_sparse=accept_sparse,
                                    check_inverse=True,
                                    validate=True)
        assert_warns_message(UserWarning,
                             "The provided functions are not strictly"
                             " inverse of each other. If you are sure you"
                             " want to proceed regardless, set"
                             " 'check_inverse=False'.",
                             trans.fit, X)

        trans = FunctionTransformer(func=np.expm1,
                                    inverse_func=np.log1p,
                                    accept_sparse=accept_sparse,
                                    check_inverse=True,
                                    validate=True)
        Xt = assert_no_warnings(trans.fit_transform, X)
        assert_allclose_dense_sparse(X, trans.inverse_transform(Xt))

    # check that we don't check inverse when one of the func or inverse is not
    # provided.
    trans = FunctionTransformer(func=np.expm1, inverse_func=None,
                                check_inverse=True, validate=True)
    assert_no_warnings(trans.fit, X_dense)
    trans = FunctionTransformer(func=None, inverse_func=np.expm1,
                                check_inverse=True, validate=True)
    assert_no_warnings(trans.fit, X_dense)
開發者ID:SuryodayBasak,項目名稱:scikit-learn,代碼行數:42,代碼來源:test_function_transformer.py


注:本文中的sklearn.preprocessing.FunctionTransformer.inverse_transform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。