當前位置: 首頁>>代碼示例>>Python>>正文


Python preprocessing.Binarizer類代碼示例

本文整理匯總了Python中sklearn.preprocessing.Binarizer的典型用法代碼示例。如果您正苦於以下問題:Python Binarizer類的具體用法?Python Binarizer怎麽用?Python Binarizer使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了Binarizer類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: cv_mean_std_array

def cv_mean_std_array(X, y, alphas, ks, n_a, n_k, cv=20):
    n = n_alphas*n_ks
    cv_mean = np.empty(n)
    cv_std = np.empty(n)
    regressors = pd.DataFrame()

    binarizer = Binarizer(threshold=1400)
    y_binary = binarizer.transform(y).transpose().ravel() 

    itt_counter = 0
    print 'size n_a: %d n_k: %d' %(n_a, n_k)
    for i in range (0, n_a):
    	print 'reg. column : %d' %(i*n_k)
    	temp_string = 'alpha=%f' %alphas[i*n_k]
    	print temp_string
    	print regressors.shape
    	df_temp = pd.DataFrame()
        print 'computing for alpha = %f' %(alphas[n_ks*i])
        X_lasso, df_temp[temp_string] = df_Lasso(X, y, alphas[i*n_k])
        regressors = pd.concat([regressors,df_temp], ignore_index=True, axis=1)
        for j in range(0, n_k):
            print 'i:%d, j:%d' %(i, j)
            print 'computing for alpha = %f and k = %f' %(alphas[n_ks*i+j], ks[n_ks*i+j])
            print 'X_lasso shape:' 
            print X_lasso.shape
            cv_mean[n_ks*i+j], cv_std[n_ks*i+j] = knn_cv_mean_and_std(X_lasso, y_binary, alphas[n_ks*i+j], ks[n_ks*i+j], cv=cv)
            itt_counter = itt_counter + 1
            print 'completed %dth iteration of knn cv mean:%f std:%f, at pos:%d' % (itt_counter, cv_mean[n_ks*i+j], cv_std[n_ks*i+j], n_ks*i+j)
    return cv_mean, cv_std, regressors
開發者ID:AveryLiu,項目名稱:Data-Mining,代碼行數:29,代碼來源:kNN-iterator.py

示例2: cv_mean_std_array

def cv_mean_std_array(X, y, alphas, n_a, cv=20):
    binarizer = Binarizer(threshold=1400)
    y_binary = binarizer.transform(y).transpose().ravel() 
    cv_ols_means, cv_ols_stds, cv_lasso_means, cv_lasso_stds, cv_ridge_means, cv_ridge_stds = np.empty(n_a), np.empty(n_a), np.empty(n_a), np.empty(n_a), np.empty(n_a), np.empty(n_a)
    
    for i in range (0, n_a):
    	print 'computing for alpha=%f' %alphas[i]
        cv_ols_means[i], cv_ols_stds[i], cv_lasso_means[i], cv_lasso_stds[i], cv_ridge_means[i], cv_ridge_stds[i] = lm_cv_mean_and_std(X, , alphas[i])
        print 'successfully computed iteration %d' %i
    return cv_ols_means, cv_ols_stds, cv_lasso_means, cv_lasso_stds, cv_ridge_means, cv_ridge_stds
開發者ID:AveryLiu,項目名稱:Data-Mining,代碼行數:10,代碼來源:linear-models-iterator.py

示例3: initialize

def initialize():
    images, labels = load_mnist_data()

    binarizer = Binarizer().fit(images)
    images_binarized = binarizer.transform(images)

    knn = KNeighborsClassifier(n_neighbors=3, metric='jaccard')
    knn.fit(images_binarized, labels)

    return knn
開發者ID:mikokm,項目名稱:DigitGuesser,代碼行數:10,代碼來源:classifiers.py

示例4: binarizeMatrix

def binarizeMatrix(dataMatrix, threshold):
    """
    Transforms all the inputs to either 0/1 . <0 Maps to 0. >1 Maps 1. [0,1] depends on the threshold you set between [0,1]
    """

    binarizer = Binarizer(threshold=threshold)

    dataMatrix = binarizer.fit_transform(dataMatrix)

    return dataMatrix
開發者ID:Gliganu,項目名稱:DMC_Fashion_2016,代碼行數:10,代碼來源:DatasetManipulator.py

示例5: test_binarizer

def test_binarizer():
    X_ = np.array([[1, 0, 5], [2, 3, 0]])

    for init in (np.array, sp.csr_matrix, sp.csc_matrix):

        X = init(X_.copy())

        binarizer = Binarizer(threshold=2.0, copy=True)
        X_bin = toarray(binarizer.transform(X))
        assert_equal(np.sum(X_bin == 0), 4)
        assert_equal(np.sum(X_bin == 1), 2)
        X_bin = binarizer.transform(X)
        assert_equal(type(X), type(X_bin))

        binarizer = Binarizer(copy=True).fit(X)
        X_bin = toarray(binarizer.transform(X))
        assert_true(X_bin is not X)
        assert_equal(np.sum(X_bin == 0), 2)
        assert_equal(np.sum(X_bin == 1), 4)

        binarizer = Binarizer(copy=True)
        X_bin = binarizer.transform(X)
        assert_true(X_bin is not X)
        X_bin = toarray(X_bin)
        assert_equal(np.sum(X_bin == 0), 2)
        assert_equal(np.sum(X_bin == 1), 4)

        binarizer = Binarizer(copy=False)
        X_bin = binarizer.transform(X)
        assert_true(X_bin is X)
        X_bin = toarray(X_bin)
        assert_equal(np.sum(X_bin == 0), 2)
        assert_equal(np.sum(X_bin == 1), 4)
開發者ID:Big-Data,項目名稱:scikit-learn,代碼行數:33,代碼來源:test_preprocessing.py

示例6: test_binarizer_vs_sklearn

def test_binarizer_vs_sklearn():
    # Compare msmbuilder.preprocessing.Binarizer
    # with sklearn.preprocessing.Binarizer

    binarizerr = BinarizerR()
    binarizerr.fit(np.concatenate(trajs))

    binarizer = Binarizer()
    binarizer.fit(trajs)

    y_ref1 = binarizerr.transform(trajs[0])
    y1 = binarizer.transform(trajs)[0]

    np.testing.assert_array_almost_equal(y_ref1, y1)
開發者ID:Eigenstate,項目名稱:msmbuilder,代碼行數:14,代碼來源:test_preprocessing.py

示例7: wine_quality_white

def wine_quality_white():
    # white wine quality dataset

    filename = '../../data/raw/mldata/winequality-white.csv'

    # The data corresponds to the 11 first column of the csv file
    data = np.loadtxt(filename, usecols=tuple(range(11)), delimiter=';', dtype=float)
    # Read the label
    # We need to binarise the label using a threshold at 4
    bn = Binarizer(threshold=4)
    label = bn.fit_transform(np.loadtxt(filename, usecols=(11,), delimiter=';', dtype=int))
    # We need to inverse the label -> 1=0 and 0=1
    label = np.ravel(np.abs(label - 1))
    
    np.savez('../../data/clean/uci-wine-quality-white.npz', data=data, label=label)
開發者ID:I2Cvb,項目名稱:data_balancing,代碼行數:15,代碼來源:conversion.py

示例8: fit

 def fit(self, X, y=None):
     """
     Обучает бинаризатор на данных
     """
     # print("Fitting binarizer...")
     methods = Binarizer._UNSUPERVISED_METHODS + Binarizer._SUPERVISED_METHODS
     if self.method not in methods:
         raise ValueError("Method should be one of {0}".format(", ".join(methods)))
     X = check_array(X, accept_sparse=['csr', 'csc'])
     if issparse(X):
         X = X.tocsc()
     if self.method in Binarizer._UNSUPERVISED_METHODS:
         self._fit_unsupervised(X)
         self.joint_thresholds_ = self.thresholds_
         self.joint_scores_ = self.scores_
     else:
         if y is None:
             raise ValueError("y must not be None for supervised binarizers.")
         # вынести в отдельную функцию
         # y = np.array(y)
         # if len(y.shape) == 1:
         #     self.classes_, y = np.unique(y, return_inverse=True)
         #     nclasses = self.classes_.shape[0]
         #     Y_new = np.zeros(shape=(y.shape[0], nclasses), dtype=int)
         #     Y_new[np.arange(y.shape[0]), y] = 1
         # else:
         #     self.classes_ = np.arange(y.shape[1])
         #     Y_new = y
         label_binarizer = SK_LabelBinarizer()
         Y_new = label_binarizer.fit_transform(y)
         self.classes_ = label_binarizer.classes_
         if X.shape[0] != Y_new.shape[0]:
             raise ValueError("X and y have incompatible shapes.\n"
                              "X has %s samples, but y has %s." %
                              (X.shape[0], Y_new.shape[0]))
         self._fit_supervised(X, Y_new)
         if len(self.classes_) <= 2:
             self.joint_thresholds_ = self.thresholds_[:, 0]
             self.joint_scores_ = self.scores_[:, 0]
         else:
             min_class_scores = np.min(self.scores_, axis=0)
             max_class_scores = np.max(self.scores_, axis=0)
             diffs = max_class_scores - min_class_scores
             diffs[np.where(diffs == 0)] = 1
             normalized_scores = (self.scores_ - min_class_scores) / diffs
             # находим для каждого признака тот класс, для которого он наиболее полезен
             # НАВЕРНО, МОЖНО СДЕЛАТЬ ПО_ДРУГОМУ
             optimal_indexes = np.argmax(normalized_scores, axis=1)
             nfeat = self.thresholds_.shape[0]
             # в качестве порога бинаризации каждого признака
             # берём значение для класса, где он наиболее полезен
             self.joint_thresholds_ = self.thresholds_[np.arange(nfeat), optimal_indexes]
             self.joint_scores_ = self.scores_[np.arange(nfeat), optimal_indexes]
     # передаём пороги в sklearn.SK_Binarizer
     self.binarize_transformer_ = SK_Binarizer(self.joint_thresholds_)
     return self
開發者ID:AlexeySorokin,項目名稱:pyparadigm,代碼行數:56,代碼來源:feature_selector.py

示例9: do_logreg

def do_logreg():
    from sklearn.preprocessing import Binarizer, scale
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score,classification_report
    from sklearn.cross_validation import train_test_split
    from sklearn.cross_validation import cross_val_score
    from sklearn.grid_search import GridSearchCV
    from scipy.stats import expon
    import pandas
    ### load data
    col_names=['mpg','cylinders','displacement','horsepower','weight',
               'acceleration','model_year','origin','car_name']
    df=pandas.read_csv('auto_mpg.csv')
    df.columns=col_names
    df=df.drop('car_name',1)
    
    lr=LogisticRegression()
    bn=Binarizer(threshold=df['mpg'].mean())
    print "Performing binarization of the mpg variable into above/below average classes"
    target=bn.fit_transform(df['mpg'])
    data=df.drop('mpg',1)
    data=scale(data)
    print "Splitting into training and test sets"
    data_train,data_test,target_train,target_test=train_test_split(data,target,test_size=0.5,random_state=0)

    grid=[0.001, 0.01, 0.1, 1, 10, 100, 1000]
    print 'Searching for optimal C in {} using {}-fold validation on test set '.format(grid,nfolds)
    tuned_parameters=[{'C':grid}]
    clf=GridSearchCV(lr,tuned_parameters,cv=nfolds,scoring='accuracy')
    clf.fit(data_train,target_train)
    for params, mean_score,_ in clf.grid_scores_:
        print "{}: Mean accuracy {}".format(params,mean_score)

    
    print  """Cross-validating above/below average mpg prediction
        using {}-fold validation on the test dataset.
        Using the best estimator: {}
        """.format(nfolds,clf.best_estimator_)
        
    mean_cross=np.mean(cross_val_score(clf.best_estimator_,data_test,target_test,cv=nfolds))

    print "Mean cross-validated accuracy after optimization is: {}".format(mean_cross)
開發者ID:jmccutchan,項目名稱:GA_homework,代碼行數:42,代碼來源:sklearn_logreg.py

示例10: us_crime

def us_crime():
    # US crime dataset

    filename = '../../data/raw/mldata/communities.data'

    # The missing data will be consider as NaN
    # Only use 122 continuous features
    tmp_data = np.genfromtxt(filename, delimiter = ',')
    tmp_data = tmp_data[:, 5:]

    # replace missing value by the mean
    imp = Imputer(verbose = 1)
    tmp_data = imp.fit_transform(tmp_data)

    # extract the data to be saved
    data = tmp_data[:, :-1]
    bn = Binarizer(threshold=0.65)
    label = np.ravel(bn.fit_transform(tmp_data[:, -1]))

    np.savez('../../data/clean/uci-us-crime.npz', data=data, label=label)
開發者ID:I2Cvb,項目名稱:data_balancing,代碼行數:20,代碼來源:conversion.py

示例11: OneHotEncoder

from sklearn.preprocessing import Binarizer, LabelEncoder, OneHotEncoder

onehot_encoder = OneHotEncoder()
label_encoder = LabelEncoder()

x = ['a', 'b', 'c']

label_x = label_encoder.fit_transform(x).reshape([len(x), 1])
print(label_x)
print(onehot_encoder.fit_transform(label_x).toarray())

binarizer = Binarizer(threshold=1.0).fit(label_x)
print(binarizer.transform(label_x))
開發者ID:yaochitc,項目名稱:learning_libraries,代碼行數:13,代碼來源:features.py

示例12: Binarizer


# In[3]:

# Import csv data
raw_data = pd.read_csv('OnlineNewsPopularity_wLabels_deleteNoise.csv').iloc[:, 1:]      # read in csv, omit the first column of url
raw_data = raw_data.iloc[:, :-1] 
news_data = raw_data.iloc[:, :-1]      # Take up to the second last column
news_labels = raw_data.iloc[:, -1]      # Take shares column for labels

# Binarize
print '\nBinary Threshold:'
binary_threshold = np.median(raw_data[' shares'])
news_data = news_data.drop(' n_non_stop_words', 1)
print binary_threshold
binarizer = Binarizer(threshold=binary_threshold)
y_binary = binarizer.transform(news_labels).transpose().ravel() 


# In[ ]:

# Discretize


# In[25]:

# Decision Tree
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier()
print 'Decision Tree Classifier Accuracy Rate'
tree_score = cross_val_score(tree, news_data, y_binary, cv=10)
開發者ID:AveryLiu,項目名稱:Data-Mining,代碼行數:29,代碼來源:DecisionTree&NB.py

示例13: DictVectorizer

news_data = extracted_data.iloc[:, :-1]      # Take up to the second last column
news_labels = extracted_data[' shares']      # Take shares column for labels

# Data Preprocessing
news_data_transpose = news_data.transpose()
data_into_dict = news_data_transpose.to_dict()
list_data = [v for k, v in data_into_dict.iteritems()]

# Encode
from sklearn.feature_extraction import DictVectorizer
dv = DictVectorizer()
transformed_data = dv.fit_transform(list_data).toarray()

# Label Encoder - Binarization
from sklearn.preprocessing import Binarizer
binarizer = Binarizer(threshold=1400)                           # Threshold at 1400 because median of shares is 1400
transformed_labels = binarizer.transform(news_labels)
transformed_labels = transformed_labels.transpose().ravel()     # .ravel() is to fix "Too many array indices error"
                                                                # Could be a scikit or pandas bug
############## Classification #################

from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVC

# Decision Tree Classifier
tree = DecisionTreeClassifier()
knn = KNeighborsClassifier()
gnb = GaussianNB()
開發者ID:AveryLiu,項目名稱:Data-Mining,代碼行數:31,代碼來源:Data_Preprocessing_Script.py

示例14: ngram

#---------------------------------------------------------------------------------------
#
#	Comment section below out if you already have made pickle files
#
#---------------------------------------------------------------------------------------

all_bigr = ngram(X_train, 'bigram') #starting with all features

print "Starting counting bigrams..."
X_train_bi_counted = count(X_train, all_bigr, 'bigram')
print "Done counting train set"
X_test_bi_counted = count(X_test, all_bigr, 'bigram')
print "Done counting test set"

print "Binarizing and dumping files"
bin = Binarizer()
X_train_bi_binary = bin.fit_transform(X_train_bi_counted)
X_test_bi_binary = bin.transform(X_test_bi_counted)
pickle.dump(X_train_bi_binary, open( "X_train_bi_binary.p", "wb" ) )
pickle.dump(X_test_bi_binary, open( "X_test_bi_binary.p", "wb" ) )
print "Done"


print "Starting tfidf vectors..."
X_train_bi_tfidf, X_test_bi_tfidf = tfidf(X_train_bi_counted, X_test_bi_counted)
pickle.dump(X_train_bi_tfidf, open( "X_train_bi_tfidf.p", "wb" ) )
pickle.dump(X_test_bi_tfidf, open( "X_test_bi_tfidf.p", "wb" ) )
print "Done"


print "Starting feature selection using CART random forests on binary files"
開發者ID:MariaBarrett,項目名稱:LPIIExam,代碼行數:31,代碼來源:ngram.py

示例15: print

_, n_features = X.get_shape()

print('Loading test data...')
with open('data/test-svmlight.dat') as infile:
	lines = infile.readlines()
	n_samples = len(lines)
	test = lil_matrix((n_samples, n_features))
	for n,line in enumerate(lines):
		for word_count in line.split():
			fid, count = word_count.split(':')
			test[n,int(fid)] = int(fid)
test = test.tocsr()

if opts.binarize:
	print('Binarizing the data...')
	binar = Binarizer(copy=False)
	X = binar.transform(X)
	test = binar.transform(test)

if opts.tfidf:
	print('Transforming word occurrences into TF-IDF...')
	tranny = TfidfTransformer()
	X = tranny.fit_transform(X)
	test = tranny.transform(test)

if opts.select_features:
	k_features = int(opts.k_features)
	if opts.select_features == 'k-best':
		print('Selecting %i best features...' % k_features)
		ch2 = SelectKBest(chi2, k=k_features)
	if opts.select_features == 'pct':
開發者ID:Androidized,項目名稱:BabysFirstTextClassifier,代碼行數:31,代碼來源:extract.py


注:本文中的sklearn.preprocessing.Binarizer類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。