當前位置: 首頁>>代碼示例>>Python>>正文


Python HuberRegressor.score方法代碼示例

本文整理匯總了Python中sklearn.linear_model.HuberRegressor.score方法的典型用法代碼示例。如果您正苦於以下問題:Python HuberRegressor.score方法的具體用法?Python HuberRegressor.score怎麽用?Python HuberRegressor.score使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.linear_model.HuberRegressor的用法示例。


在下文中一共展示了HuberRegressor.score方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_huber_better_r2_score

# 需要導入模塊: from sklearn.linear_model import HuberRegressor [as 別名]
# 或者: from sklearn.linear_model.HuberRegressor import score [as 別名]
def test_huber_better_r2_score():
    # Test that huber returns a better r2 score than non-outliers"""
    X, y = make_regression_with_outliers()
    huber = HuberRegressor(fit_intercept=True, alpha=0.01, max_iter=100)
    huber.fit(X, y)
    linear_loss = np.dot(X, huber.coef_) + huber.intercept_ - y
    mask = np.abs(linear_loss) < huber.epsilon * huber.scale_
    huber_score = huber.score(X[mask], y[mask])
    huber_outlier_score = huber.score(X[~mask], y[~mask])

    # The Ridge regressor should be influenced by the outliers and hence
    # give a worse score on the non-outliers as compared to the huber regressor.
    ridge = Ridge(fit_intercept=True, alpha=0.01)
    ridge.fit(X, y)
    ridge_score = ridge.score(X[mask], y[mask])
    ridge_outlier_score = ridge.score(X[~mask], y[~mask])
    assert_greater(huber_score, ridge_score)

    # The huber model should also fit poorly on the outliers.
    assert_greater(ridge_outlier_score, huber_outlier_score)
開發者ID:MartinThoma,項目名稱:scikit-learn,代碼行數:22,代碼來源:test_huber.py


注:本文中的sklearn.linear_model.HuberRegressor.score方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。