當前位置: 首頁>>代碼示例>>Python>>正文


Python FactorAnalysis.transform方法代碼示例

本文整理匯總了Python中sklearn.decomposition.FactorAnalysis.transform方法的典型用法代碼示例。如果您正苦於以下問題:Python FactorAnalysis.transform方法的具體用法?Python FactorAnalysis.transform怎麽用?Python FactorAnalysis.transform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.decomposition.FactorAnalysis的用法示例。


在下文中一共展示了FactorAnalysis.transform方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_factor_analysis

# 需要導入模塊: from sklearn.decomposition import FactorAnalysis [as 別名]
# 或者: from sklearn.decomposition.FactorAnalysis import transform [as 別名]
def test_factor_analysis():
    """Test FactorAnalysis ability to recover the data covariance structure
    """
    rng = np.random.RandomState(0)
    n_samples, n_features, n_components = 20, 5, 3

    # Some random settings for the generative model
    W = rng.randn(n_components, n_features)
    # latent variable of dim 3, 20 of it
    h = rng.randn(n_samples, n_components)
    # using gamma to model different noise variance
    # per component
    noise = rng.gamma(1, size=n_features) * rng.randn(n_samples, n_features)

    # generate observations
    # wlog, mean is 0
    X = np.dot(h, W) + noise
    assert_raises(ValueError, FactorAnalysis, svd_method='foo')
    fa_fail = FactorAnalysis()
    fa_fail.svd_method = 'foo'
    assert_raises(ValueError, fa_fail.fit, X)
    fas = []
    for method in ['randomized', 'lapack']:
        fa = FactorAnalysis(n_components=n_components, svd_method=method)
        fa.fit(X)
        fas.append(fa)

        X_t = fa.transform(X)
        assert_equal(X_t.shape, (n_samples, n_components))

        assert_almost_equal(fa.loglike_[-1], fa.score(X).sum())

        diff = np.all(np.diff(fa.loglike_))
        assert_greater(diff, 0., 'Log likelihood dif not increase')

        # Sample Covariance
        scov = np.cov(X, rowvar=0., bias=1.)

        # Model Covariance
        mcov = fa.get_covariance()
        diff = np.sum(np.abs(scov - mcov)) / W.size
        assert_less(diff, 0.1, "Mean absolute difference is %f" % diff)
        fa = FactorAnalysis(n_components=n_components,
                            noise_variance_init=np.ones(n_features))
        assert_raises(ValueError, fa.fit, X[:, :2])

    f = lambda x, y: np.abs(getattr(x, y))  # sign will not be equal
    fa1, fa2 = fas
    for attr in ['loglike_', 'components_', 'noise_variance_']:
        assert_almost_equal(f(fa1, attr), f(fa2, attr))
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always', ConvergenceWarning)
        fa1.max_iter = 1
        fa1.verbose = True
        fa1.fit(X)
        assert_true(w[-1].category == ConvergenceWarning)

        warnings.simplefilter('always', DeprecationWarning)
        FactorAnalysis(verbose=1)
        assert_true(w[-1].category == DeprecationWarning)
開發者ID:ChicoQ,項目名稱:scikit-learn,代碼行數:62,代碼來源:test_factor_analysis.py

示例2: get_inv_diag_plus_low_rank_cov_op

# 需要導入模塊: from sklearn.decomposition import FactorAnalysis [as 別名]
# 或者: from sklearn.decomposition.FactorAnalysis import transform [as 別名]
def get_inv_diag_plus_low_rank_cov_op(X, rank=2):
    fa = FactorAnalysis(n_components=rank)
    fa.fit(X)
    components = fa.components_
    noise_vars = fa.noise_variance_
    activations = fa.transform(X)

    return _woodbury_inverse(_diagonal_operator(1. / noise_vars),
                 aslinearoperator(np.linalg.inv(1. / len(activations) * 
                                  activations.T.dot(activations))),
                 components.T, components)
開發者ID:eickenberg,項目名稱:fbg_code,代碼行數:13,代碼來源:multi_target_ridge_with_noise_covariance.py

示例3: test_factor_analysis

# 需要導入模塊: from sklearn.decomposition import FactorAnalysis [as 別名]
# 或者: from sklearn.decomposition.FactorAnalysis import transform [as 別名]
def test_factor_analysis():
    """Test FactorAnalysis ability to recover the data covariance structure
    """
    rng = np.random.RandomState(0)
    n_samples, n_features, n_components = 20, 5, 3

    # Some random settings for the generative model
    W = rng.randn(n_components, n_features)
    # latent variable of dim 3, 20 of it
    h = rng.randn(n_samples, n_components)
    # using gamma to model different noise variance
    # per component
    noise = rng.gamma(1, size=n_features) \
                * rng.randn(n_samples, n_features)

    # generate observations
    # wlog, mean is 0
    X = np.dot(h, W) + noise

    fa = FactorAnalysis(n_components=n_components)
    fa.fit(X)
    X_t = fa.transform(X)
    assert_true(X_t.shape == (n_samples, n_components))

    assert_almost_equal(fa.loglike_[-1], fa.score(X).sum())

    # Make log likelihood increases at each iteration
    assert_true(np.all(np.diff(fa.loglike_) > 0.))

    # Sample Covariance
    scov = np.cov(X, rowvar=0., bias=1.)

    # Model Covariance
    mcov = fa.get_covariance()
    diff = np.sum(np.abs(scov - mcov)) / W.size
    assert_true(diff < 0.1, "Mean absolute difference is %f" % diff)

    fa = FactorAnalysis(n_components=n_components,
                        noise_variance_init=np.ones(n_features))
    assert_raises(ValueError, fa.fit, X[:, :2])
開發者ID:cdeil,項目名稱:scikit-learn,代碼行數:42,代碼來源:test_factor_analysis.py

示例4: initialize

# 需要導入模塊: from sklearn.decomposition import FactorAnalysis [as 別名]
# 或者: from sklearn.decomposition.FactorAnalysis import transform [as 別名]
def initialize(trials, params, config):
    """Make skeleton"""
    # TODO: fast initialization for large dataset
    from sklearn.decomposition import FactorAnalysis

    zdim = params["zdim"]
    xdim = params["xdim"]

    # TODO: use only a subsample of trials?
    y = np.concatenate([trial["y"] for trial in trials], axis=0)
    subsample = np.random.choice(y.shape[0], max(y.shape[0] // 10, 50))
    ydim = y.shape[-1]
    fa = FactorAnalysis(n_components=zdim, random_state=0)
    z = fa.fit_transform(y[subsample, :])
    a = fa.components_
    b = np.log(np.maximum(np.mean(y, axis=0, keepdims=True), config["eps"]))
    noise = np.var(y[subsample, :] - z @ a, ddof=0, axis=0)

    # stupid way of update
    # two cases
    # 1) no key
    # 2) empty value (None)
    if params.get("a") is None:
        params.update(a=a)
    if params.get("b") is None:
        params.update(b=b)
    if params.get("noise") is None:
        params.update(noise=noise)

    for trial in trials:
        length = trial["y"].shape[0]

        if trial.get("mu") is None:
            trial.update(mu=fa.transform(trial["y"]))

        if trial.get("x") is None:
            trial.update(x=np.ones((length, xdim, ydim)))

        trial.update({"w": np.zeros((length, zdim)), "v": np.zeros((length, zdim))})
開發者ID:catniplab,項目名稱:vLGP,代碼行數:41,代碼來源:preprocess.py

示例5: test_factor_analysis

# 需要導入模塊: from sklearn.decomposition import FactorAnalysis [as 別名]
# 或者: from sklearn.decomposition.FactorAnalysis import transform [as 別名]
def test_factor_analysis():
    # Test FactorAnalysis ability to recover the data covariance structure
    rng = np.random.RandomState(0)
    n_samples, n_features, n_components = 20, 5, 3

    # Some random settings for the generative model
    W = rng.randn(n_components, n_features)
    # latent variable of dim 3, 20 of it
    h = rng.randn(n_samples, n_components)
    # using gamma to model different noise variance
    # per component
    noise = rng.gamma(1, size=n_features) * rng.randn(n_samples, n_features)

    # generate observations
    # wlog, mean is 0
    X = np.dot(h, W) + noise

    assert_raises(ValueError, FactorAnalysis, svd_method='foo')
    fa_fail = FactorAnalysis()
    fa_fail.svd_method = 'foo'
    assert_raises(ValueError, fa_fail.fit, X)
    fas = []
    for method in ['randomized', 'lapack']:
        fa = FactorAnalysis(n_components=n_components, svd_method=method)
        fa.fit(X)
        fas.append(fa)

        X_t = fa.transform(X)
        assert_equal(X_t.shape, (n_samples, n_components))

        assert_almost_equal(fa.loglike_[-1], fa.score_samples(X).sum())
        assert_almost_equal(fa.score_samples(X).mean(), fa.score(X))

        diff = np.all(np.diff(fa.loglike_))
        assert_greater(diff, 0., 'Log likelihood dif not increase')

        # Sample Covariance
        scov = np.cov(X, rowvar=0., bias=1.)

        # Model Covariance
        mcov = fa.get_covariance()
        diff = np.sum(np.abs(scov - mcov)) / W.size
        assert_less(diff, 0.1, "Mean absolute difference is %f" % diff)
        fa = FactorAnalysis(n_components=n_components,
                            noise_variance_init=np.ones(n_features))
        assert_raises(ValueError, fa.fit, X[:, :2])

    f = lambda x, y: np.abs(getattr(x, y))  # sign will not be equal
    fa1, fa2 = fas
    for attr in ['loglike_', 'components_', 'noise_variance_']:
        assert_almost_equal(f(fa1, attr), f(fa2, attr))

    fa1.max_iter = 1
    fa1.verbose = True
    assert_warns(ConvergenceWarning, fa1.fit, X)

    # Test get_covariance and get_precision with n_components == n_features
    # with n_components < n_features and with n_components == 0
    for n_components in [0, 2, X.shape[1]]:
        fa.n_components = n_components
        fa.fit(X)
        cov = fa.get_covariance()
        precision = fa.get_precision()
        assert_array_almost_equal(np.dot(cov, precision),
                                  np.eye(X.shape[1]), 12)
開發者ID:1992huanghai,項目名稱:scikit-learn,代碼行數:67,代碼來源:test_factor_analysis.py

示例6: load_data

# 需要導入模塊: from sklearn.decomposition import FactorAnalysis [as 別名]
# 或者: from sklearn.decomposition.FactorAnalysis import transform [as 別名]
from sklearn.decomposition import FactorAnalysis
try:
    import cPickle as pickle
except:
    import pickle

# Factor Analysis

# ================================================================
# Apply factor analysis on the tf-idf matrix and transform raw documents into
# intermediate representation.
docs_tfidf, vocab_tfidf, vocabulary = load_data(subset='all')
n_components = 40
fa = FactorAnalysis(n_components=n_components)
fa.fit(docs_tfidf.toarray())
fa_words = fa.transform(vocab_tfidf.toarray())

# Create a dict to hold the new pca words.
fa_dict = dict(zip(vocabulary, fa_words))

# Store the intermediate representation pca words on disk.
fa_dict_filename = 'fa_dict.pk'
if not os.path.exists(fa_dict_filename):
    fa_dict_file = open(fa_dict_filename, 'w')
    pickle.dump(fa_dict, fa_dict_file)

# Store estimator on dist for further usage.
fa_estimator_filename = 'fa_estimator.pk'
if not os.path.exists(fa_estimator_filename):
    fa_estimator_file = open(fa_estimator_filename, 'w')
    pickle.dump(fa, fa_estimator_file)
開發者ID:shawnLeeZX,項目名稱:learning_intermediate_representation,代碼行數:33,代碼來源:fa.py

示例7: factorAna

# 需要導入模塊: from sklearn.decomposition import FactorAnalysis [as 別名]
# 或者: from sklearn.decomposition.FactorAnalysis import transform [as 別名]
def factorAna(x,testData,n_components):
    fa = FactorAnalysis(n_components) 
    fa.fit(x)   
    newData = fa.transform(testData)  
    return newData    
開發者ID:ruige123456,項目名稱:dataMining,代碼行數:7,代碼來源:dfs.py

示例8: range

# 需要導入模塊: from sklearn.decomposition import FactorAnalysis [as 別名]
# 或者: from sklearn.decomposition.FactorAnalysis import transform [as 別名]
    certainty.append([])
    # each network has a vote in that cross validation fold
    for s in range(len(seeds)):
        X = np.vstack([np.array(g1_fmri[s]), np.array(g2_fmri[s])])
        y = np.array(labels)
        X = preprocessing.scale(X)

        print 'seed %d: cv %d/%d'%(s+1,oidx+1,nobs)
        X_train = X[train]
        X_test = X[test]
        y_train = y[train]
        y_test = y[test]
        c_val_scores = []
        dimred = FactorAnalysis(n_components=20)
        X_train = dimred.fit_transform(X_train)
        X_test = dimred.transform(X_test)
        for c in cs:
            inner_preds = []
            clf = LogisticRegression(C=c, penalty="l1", dual=False, class_weight='auto')
            for iidx, (itrain, itest) in enumerate(inner_cv):
                X_inner_train = X_train[itrain]
                X_val = X_train[itest]
                y_inner_train = y_train[itrain]
                y_val = y_train[itest]
                scaler = preprocessing.StandardScaler().fit(X_inner_train)
                X_inner_train = scaler.transform(X_inner_train)
                X_val = scaler.transform(X_val)
                clf.fit(X_inner_train, y_inner_train)
                inner_preds.append(clf.predict(X_val))
            c_val_scores.append(f1_score(y_train, inner_preds, pos_label=1))
        best_c = cs[np.argmax(c_val_scores)]
開發者ID:gsudre,項目名稱:research_code,代碼行數:33,代碼來源:classify_rest_meg.py

示例9:

# 需要導入模塊: from sklearn.decomposition import FactorAnalysis [as 別名]
# 或者: from sklearn.decomposition.FactorAnalysis import transform [as 別名]
# <codecell>

comps = pd.DataFrame(componentMatrix).T

# <codecell>

comps.index = pct_df.columns
comps

# <codecell>

comps.to_csv('factors.csv',sep = ',')

# <codecell>

X_transformed = fa.transform(X)

# <codecell>

factored = pd.DataFrame(X_transformed)

# <codecell>

factored.to_csv('factoredX.csv', sep = ',')

# <codecell>

from sklearn.cluster import KMeans

# <codecell>
開發者ID:solfege,項目名稱:stop-frisk-analysis,代碼行數:32,代碼來源:factorKmeansWork.py

示例10: read_csv

# 需要導入模塊: from sklearn.decomposition import FactorAnalysis [as 別名]
# 或者: from sklearn.decomposition.FactorAnalysis import transform [as 別名]
metabolomics = read_csv('%s/data/kirc_metabolomics_abs_imputed_normalised.txt' % wd, sep='\t', index_col=0)

# Transcriptomics
transcriptomics = read_csv('%s/data/kirc_transcriptomics_filtered_voom_normalised.txt' % wd, sep='\t', index_col=0)


# -- Factor analysis
n_components = 5

# Metabolomics
metabolomics_fa = FactorAnalysis(n_components=n_components).fit(metabolomics)

metabolomics_hfac = DataFrame(metabolomics_fa.components_, index=['Factor%d' % (i + 1) for i in range(n_components)], columns=metabolomics.columns).T
metabolomics_hfac['type'] = [metabolomics_cinfo.ix[i, 'TISSUE TYPE'] for i in metabolomics_hfac.index]

metabolomics_feat = DataFrame(metabolomics_fa.transform(metabolomics), index=metabolomics.index, columns=['Factor%d' % (i + 1) for i in range(n_components)])
print metabolomics_feat.head()

# Transcriptomics
transcriptomics_fa = FactorAnalysis(n_components=n_components).fit(transcriptomics)
transcriptomics_hfac = DataFrame(transcriptomics_fa.components_, index=['Factor%d' % (i + 1) for i in range(n_components)], columns=transcriptomics.columns).T
transcriptomics_hfac['type'] = ['T' if i.split('-')[3].startswith('01') else 'N' for i in transcriptomics_hfac.index]

transcriptomics_feat = DataFrame(transcriptomics_fa.transform(transcriptomics), index=transcriptomics.index, columns=['Factor%d' % (i + 1) for i in range(n_components)])
print transcriptomics_feat.head()


# -- Plot
pal = {'T': '#e74c3c', 'N': '#34495e'}

# Metabolomics
開發者ID:EmanuelGoncalves,項目名稱:mtkirc,代碼行數:33,代碼來源:factoranalysis.py


注:本文中的sklearn.decomposition.FactorAnalysis.transform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。