當前位置: 首頁>>代碼示例>>Python>>正文


Python ShrunkCovariance.fit方法代碼示例

本文整理匯總了Python中sklearn.covariance.ShrunkCovariance.fit方法的典型用法代碼示例。如果您正苦於以下問題:Python ShrunkCovariance.fit方法的具體用法?Python ShrunkCovariance.fit怎麽用?Python ShrunkCovariance.fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.covariance.ShrunkCovariance的用法示例。


在下文中一共展示了ShrunkCovariance.fit方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_oas

# 需要導入模塊: from sklearn.covariance import ShrunkCovariance [as 別名]
# 或者: from sklearn.covariance.ShrunkCovariance import fit [as 別名]
def test_oas():
    """Tests OAS module on a simple dataset.

    """
    # test shrinkage coeff on a simple data set
    oa = OAS()
    oa.fit(X, assume_centered=True)
    assert_almost_equal(oa.shrinkage_, 0.018740, 4)
    assert_almost_equal(oa.score(X, assume_centered=True), -5.03605, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X, assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_)
    scov.fit(X, assume_centered=True)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    oa = OAS()
    oa.fit(X_1d, assume_centered=True)
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d, assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False)
    oa.fit(X, assume_centered=True)
    assert_almost_equal(oa.score(X, assume_centered=True), -5.03605, 4)
    assert(oa.precision_ is None)

    ### Same tests without assuming centered data
    # test shrinkage coeff on a simple data set
    oa = OAS()
    oa.fit(X)
    assert_almost_equal(oa.shrinkage_, 0.020236, 4)
    assert_almost_equal(oa.score(X), 2.079025, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_)
    scov.fit(X)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    oa = OAS()
    oa.fit(X_1d)
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False)
    oa.fit(X)
    assert_almost_equal(oa.score(X), 2.079025, 4)
    assert(oa.precision_ is None)
開發者ID:bvtrach,項目名稱:scikit-learn,代碼行數:62,代碼來源:test_covariance.py

示例2: test_shrunk_covariance

# 需要導入模塊: from sklearn.covariance import ShrunkCovariance [as 別名]
# 或者: from sklearn.covariance.ShrunkCovariance import fit [as 別名]
def test_shrunk_covariance():
    """Tests ShrunkCovariance module on a simple dataset.

    """
    # compare shrunk covariance obtained from data and from MLE estimate
    cov = ShrunkCovariance(shrinkage=0.5)
    cov.fit(X)
    assert_array_almost_equal(
        shrunk_covariance(empirical_covariance(X), shrinkage=0.5),
        cov.covariance_, 4)

    # same test with shrinkage not provided
    cov = ShrunkCovariance()
    cov.fit(X)
    assert_array_almost_equal(
        shrunk_covariance(empirical_covariance(X)), cov.covariance_, 4)

    # same test with shrinkage = 0 (<==> empirical_covariance)
    cov = ShrunkCovariance(shrinkage=0.)
    cov.fit(X)
    assert_array_almost_equal(empirical_covariance(X), cov.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    cov = ShrunkCovariance(shrinkage=0.3)
    cov.fit(X_1d)
    assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    cov = ShrunkCovariance(shrinkage=0.5, store_precision=False)
    cov.fit(X)
    assert(cov.precision_ is None)
開發者ID:forkloop,項目名稱:scikit-learn,代碼行數:34,代碼來源:test_covariance.py

示例3: precisionCol

# 需要導入模塊: from sklearn.covariance import ShrunkCovariance [as 別名]
# 或者: from sklearn.covariance.ShrunkCovariance import fit [as 別名]
def precisionCol(cleandata, k):
    """Using precision matrix to choose useful attributes in high dimensional data"""
    model = ShrunkCovariance()
    model.fit(cleandata)
    pre_ = pd.DataFrame(model.get_precision())
    pre_.index = cleandata.columns
    pre_.columns = cleandata.columns
    test = abs(pre_['Y'])
    test.sort()
    test = test[-k:]
    coltest = (test.index).drop('Y')
    return coltest
開發者ID:tw991,項目名稱:crowdanalytics,代碼行數:14,代碼來源:inferfunction.py

示例4: test_ledoit_wolf

# 需要導入模塊: from sklearn.covariance import ShrunkCovariance [as 別名]
# 或者: from sklearn.covariance.ShrunkCovariance import fit [as 別名]
def test_ledoit_wolf():
    """Tests LedoitWolf module on a simple dataset.

    """
    # test shrinkage coeff on a simple data set
    lw = LedoitWolf()
    lw.fit(X, assume_centered=True)
    assert_almost_equal(lw.shrinkage_, 0.00192, 4)
    assert_almost_equal(lw.score(X, assume_centered=True), -2.89795, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X,
                                                        assume_centered=True)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_)
    # compare estimates given by LW and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=lw.shrinkage_)
    scov.fit(X, assume_centered=True)
    assert_array_almost_equal(scov.covariance_, lw.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    lw = LedoitWolf()
    lw.fit(X_1d, assume_centered=True)
    lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d,
                                                         assume_centered=True)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_)
    assert_array_almost_equal((X_1d ** 2).sum() / n_samples, lw.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    lw = LedoitWolf(store_precision=False)
    lw.fit(X, assume_centered=True)
    assert_almost_equal(lw.score(X, assume_centered=True), -2.89795, 4)
    assert(lw.precision_ is None)

    # Same tests without assuming centered data
    # test shrinkage coeff on a simple data set
    lw = LedoitWolf()
    lw.fit(X)
    assert_almost_equal(lw.shrinkage_, 0.007582, 4)
    assert_almost_equal(lw.score(X), 2.243483, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_)
    # compare estimates given by LW and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=lw.shrinkage_)
    scov.fit(X)
    assert_array_almost_equal(scov.covariance_, lw.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    lw = LedoitWolf()
    lw.fit(X_1d)
    lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_)
    assert_array_almost_equal(empirical_covariance(X_1d), lw.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    lw = LedoitWolf(store_precision=False)
    lw.fit(X)
    assert_almost_equal(lw.score(X), 2.2434839, 4)
    assert(lw.precision_ is None)
開發者ID:forkloop,項目名稱:scikit-learn,代碼行數:66,代碼來源:test_covariance.py

示例5: test_oas

# 需要導入模塊: from sklearn.covariance import ShrunkCovariance [as 別名]
# 或者: from sklearn.covariance.ShrunkCovariance import fit [as 別名]
def test_oas():
    """Tests OAS module on a simple dataset.

    """
    # test shrinkage coeff on a simple data set
    X_centered = X - X.mean(axis=0)
    oa = OAS(assume_centered=True)
    oa.fit(X_centered)
    shrinkage_ = oa.shrinkage_
    score_ = oa.score(X_centered)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_centered,
                                                 assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_, assume_centered=True)
    scov.fit(X_centered)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    oa = OAS(assume_centered=True)
    oa.fit(X_1d)
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d, assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False, assume_centered=True)
    oa.fit(X_centered)
    assert_almost_equal(oa.score(X_centered), score_, 4)
    assert(oa.precision_ is None)

    ### Same tests without assuming centered data
    # test shrinkage coeff on a simple data set
    oa = OAS()
    oa.fit(X)
    assert_almost_equal(oa.shrinkage_, shrinkage_, 4)
    assert_almost_equal(oa.score(X), score_, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_)
    scov.fit(X)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    oa = OAS()
    oa.fit(X_1d)
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4)

    # test with one sample
    X_1sample = np.arange(5)
    oa = OAS()
    with warnings.catch_warnings(record=True):
        oa.fit(X_1sample)

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False)
    oa.fit(X)
    assert_almost_equal(oa.score(X), score_, 4)
    assert(oa.precision_ is None)
開發者ID:GbalsaC,項目名稱:bitnamiP,代碼行數:72,代碼來源:test_covariance.py

示例6: test_ledoit_wolf

# 需要導入模塊: from sklearn.covariance import ShrunkCovariance [as 別名]
# 或者: from sklearn.covariance.ShrunkCovariance import fit [as 別名]
def test_ledoit_wolf():
    """Tests LedoitWolf module on a simple dataset.

    """
    # test shrinkage coeff on a simple data set
    X_centered = X - X.mean(axis=0)
    lw = LedoitWolf(assume_centered=True)
    lw.fit(X_centered)
    shrinkage_ = lw.shrinkage_
    score_ = lw.score(X_centered)
    assert_almost_equal(ledoit_wolf_shrinkage(X_centered,
                                              assume_centered=True),
                        shrinkage_)
    assert_almost_equal(ledoit_wolf_shrinkage(X_centered,
                                assume_centered=True, block_size=6),
                        shrinkage_)
    # compare shrunk covariance obtained from data and from MLE estimate
    lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_centered,
                                                        assume_centered=True)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_)
    # compare estimates given by LW and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=lw.shrinkage_, assume_centered=True)
    scov.fit(X_centered)
    assert_array_almost_equal(scov.covariance_, lw.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    lw = LedoitWolf(assume_centered=True)
    lw.fit(X_1d)
    lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d,
                                                         assume_centered=True)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_)
    assert_array_almost_equal((X_1d ** 2).sum() / n_samples, lw.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    lw = LedoitWolf(store_precision=False, assume_centered=True)
    lw.fit(X_centered)
    assert_almost_equal(lw.score(X_centered), score_, 4)
    assert(lw.precision_ is None)

    # (too) large data set
    X_large = np.ones((20, 200))
    assert_raises(MemoryError, ledoit_wolf, X_large, block_size=100)

    # Same tests without assuming centered data
    # test shrinkage coeff on a simple data set
    lw = LedoitWolf()
    lw.fit(X)
    assert_almost_equal(lw.shrinkage_, shrinkage_, 4)
    assert_almost_equal(lw.shrinkage_, ledoit_wolf_shrinkage(X))
    assert_almost_equal(lw.shrinkage_, ledoit_wolf(X)[1])
    assert_almost_equal(lw.score(X), score_, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_)
    # compare estimates given by LW and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=lw.shrinkage_)
    scov.fit(X)
    assert_array_almost_equal(scov.covariance_, lw.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    lw = LedoitWolf()
    lw.fit(X_1d)
    lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_)
    assert_array_almost_equal(empirical_covariance(X_1d), lw.covariance_, 4)

    # test with one sample
    X_1sample = np.arange(5)
    lw = LedoitWolf()
    with warnings.catch_warnings(record=True):
        lw.fit(X_1sample)

    # test shrinkage coeff on a simple data set (without saving precision)
    lw = LedoitWolf(store_precision=False)
    lw.fit(X)
    assert_almost_equal(lw.score(X), score_, 4)
    assert(lw.precision_ is None)
開發者ID:GbalsaC,項目名稱:bitnamiP,代碼行數:85,代碼來源:test_covariance.py

示例7: test_oas

# 需要導入模塊: from sklearn.covariance import ShrunkCovariance [as 別名]
# 或者: from sklearn.covariance.ShrunkCovariance import fit [as 別名]
def test_oas():
    # Tests OAS module on a simple dataset.
    # test shrinkage coeff on a simple data set
    X_centered = X - X.mean(axis=0)
    oa = OAS(assume_centered=True)
    oa.fit(X_centered)
    shrinkage_ = oa.shrinkage_
    score_ = oa.score(X_centered)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shrinkage_from_mle = oas(X_centered,
                                                 assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shrinkage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_, assume_centered=True)
    scov.fit(X_centered)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0:1]
    oa = OAS(assume_centered=True)
    oa.fit(X_1d)
    oa_cov_from_mle, oa_shrinkage_from_mle = oas(X_1d, assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shrinkage_from_mle, oa.shrinkage_)
    assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False, assume_centered=True)
    oa.fit(X_centered)
    assert_almost_equal(oa.score(X_centered), score_, 4)
    assert(oa.precision_ is None)

    # Same tests without assuming centered data--------------------------------
    # test shrinkage coeff on a simple data set
    oa = OAS()
    oa.fit(X)
    assert_almost_equal(oa.shrinkage_, shrinkage_, 4)
    assert_almost_equal(oa.score(X), score_, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shrinkage_from_mle = oas(X)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shrinkage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_)
    scov.fit(X)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    oa = OAS()
    oa.fit(X_1d)
    oa_cov_from_mle, oa_shrinkage_from_mle = oas(X_1d)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shrinkage_from_mle, oa.shrinkage_)
    assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4)

    # test with one sample
    # warning should be raised when using only 1 sample
    X_1sample = np.arange(5).reshape(1, 5)
    oa = OAS()
    assert_warns(UserWarning, oa.fit, X_1sample)
    assert_array_almost_equal(oa.covariance_,
                              np.zeros(shape=(5, 5), dtype=np.float64))

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False)
    oa.fit(X)
    assert_almost_equal(oa.score(X), score_, 4)
    assert(oa.precision_ is None)
開發者ID:AlexisMignon,項目名稱:scikit-learn,代碼行數:72,代碼來源:test_covariance.py

示例8: test_ledoit_wolf

# 需要導入模塊: from sklearn.covariance import ShrunkCovariance [as 別名]
# 或者: from sklearn.covariance.ShrunkCovariance import fit [as 別名]
def test_ledoit_wolf():
    # Tests LedoitWolf module on a simple dataset.
    # test shrinkage coeff on a simple data set
    X_centered = X - X.mean(axis=0)
    lw = LedoitWolf(assume_centered=True)
    lw.fit(X_centered)
    shrinkage_ = lw.shrinkage_

    score_ = lw.score(X_centered)
    assert_almost_equal(ledoit_wolf_shrinkage(X_centered,
                                              assume_centered=True),
                        shrinkage_)
    assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True,
                                              block_size=6),
                        shrinkage_)
    # compare shrunk covariance obtained from data and from MLE estimate
    lw_cov_from_mle, lw_shrinkage_from_mle = ledoit_wolf(X_centered,
                                                         assume_centered=True)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shrinkage_from_mle, lw.shrinkage_)
    # compare estimates given by LW and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=lw.shrinkage_, assume_centered=True)
    scov.fit(X_centered)
    assert_array_almost_equal(scov.covariance_, lw.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    lw = LedoitWolf(assume_centered=True)
    lw.fit(X_1d)
    lw_cov_from_mle, lw_shrinkage_from_mle = ledoit_wolf(X_1d,
                                                         assume_centered=True)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shrinkage_from_mle, lw.shrinkage_)
    assert_array_almost_equal((X_1d ** 2).sum() / n_samples, lw.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    lw = LedoitWolf(store_precision=False, assume_centered=True)
    lw.fit(X_centered)
    assert_almost_equal(lw.score(X_centered), score_, 4)
    assert(lw.precision_ is None)

    # Same tests without assuming centered data
    # test shrinkage coeff on a simple data set
    lw = LedoitWolf()
    lw.fit(X)
    assert_almost_equal(lw.shrinkage_, shrinkage_, 4)
    assert_almost_equal(lw.shrinkage_, ledoit_wolf_shrinkage(X))
    assert_almost_equal(lw.shrinkage_, ledoit_wolf(X)[1])
    assert_almost_equal(lw.score(X), score_, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    lw_cov_from_mle, lw_shrinkage_from_mle = ledoit_wolf(X)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shrinkage_from_mle, lw.shrinkage_)
    # compare estimates given by LW and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=lw.shrinkage_)
    scov.fit(X)
    assert_array_almost_equal(scov.covariance_, lw.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    lw = LedoitWolf()
    lw.fit(X_1d)
    lw_cov_from_mle, lw_shrinkage_from_mle = ledoit_wolf(X_1d)
    assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4)
    assert_almost_equal(lw_shrinkage_from_mle, lw.shrinkage_)
    assert_array_almost_equal(empirical_covariance(X_1d), lw.covariance_, 4)

    # test with one sample
    # warning should be raised when using only 1 sample
    X_1sample = np.arange(5).reshape(1, 5)
    lw = LedoitWolf()
    assert_warns(UserWarning, lw.fit, X_1sample)
    assert_array_almost_equal(lw.covariance_,
                              np.zeros(shape=(5, 5), dtype=np.float64))

    # test shrinkage coeff on a simple data set (without saving precision)
    lw = LedoitWolf(store_precision=False)
    lw.fit(X)
    assert_almost_equal(lw.score(X), score_, 4)
    assert(lw.precision_ is None)
開發者ID:AlexisMignon,項目名稱:scikit-learn,代碼行數:82,代碼來源:test_covariance.py

示例9: fit

# 需要導入模塊: from sklearn.covariance import ShrunkCovariance [as 別名]
# 或者: from sklearn.covariance.ShrunkCovariance import fit [as 別名]
    def fit(self, epochs_data, y):
        """Estimate the CSP decomposition on epochs.

        Parameters
        ----------
        epochs_data : array, shape=(n_epochs, n_channels, n_times)
            The data to estimate the CSP on.
        y : array
            The class for each epoch.

        Returns
        -------
        self : instance of CSP
            Returns the modified instance.
        """
        if not isinstance(epochs_data, np.ndarray):
            raise ValueError("epochs_data should be of type ndarray (got %s)."
                             % type(epochs_data))
        epochs_data = np.atleast_3d(epochs_data)
        classes = np.unique(y)
        if len(classes) != 2:
            raise ValueError("More than two different classes in the data.")
        # concatenate epochs
        class_1 = np.transpose(epochs_data[y == classes[0]],
                               [1, 0, 2]).reshape(epochs_data.shape[1], -1)
        class_2 = np.transpose(epochs_data[y == classes[1]],
                               [1, 0, 2]).reshape(epochs_data.shape[1], -1)
        if self.reg is None:
            # compute empirical covariance
            cov_1 = np.dot(class_1, class_1.T)
            cov_2 = np.dot(class_2, class_2.T)
        else:
            # use sklearn covariance estimators
            if isinstance(self.reg, float):
                if (self.reg < 0) or (self.reg > 1):
                    raise ValueError('0 <= shrinkage <= 1 for '
                                     'covariance regularization.')
                try:
                    import sklearn
                    sklearn_version = LooseVersion(sklearn.__version__)
                    from sklearn.covariance import ShrunkCovariance
                except ImportError:
                    raise Exception('the scikit-learn package is missing and '
                                    'required for covariance regularization.')
                if sklearn_version < '0.12':
                    skl_cov = ShrunkCovariance(shrinkage=self.reg,
                                               store_precision=False)
                else:
                    # init sklearn.covariance.ShrunkCovariance estimator
                    skl_cov = ShrunkCovariance(shrinkage=self.reg,
                                               store_precision=False,
                                               assume_centered=True)
            elif isinstance(self.reg, str):
                if self.reg == 'lws':
                    try:
                        from sklearn.covariance import LedoitWolf
                    except ImportError:
                        raise Exception('the scikit-learn package is missing '
                                        'and required for regularization.')
                    # init sklearn.covariance.LedoitWolf estimator
                    skl_cov = LedoitWolf(store_precision=False,
                                         assume_centered=True)
                elif self.reg == 'oas':
                    try:
                        from sklearn.covariance import OAS
                    except ImportError:
                        raise Exception('the scikit-learn package is missing '
                                        'and required for regularization.')
                    # init sklearn.covariance.OAS estimator
                    skl_cov = OAS(store_precision=False,
                                  assume_centered=True)
                else:
                    raise ValueError("regularization parameter should be "
                                     "of type str (got %s)." % type(self.reg))
            else:
                raise ValueError("regularization parameter should be "
                                 "of type str (got %s)." % type(self.reg))

            # compute regularized covariance using sklearn
            cov_1 = skl_cov.fit(class_1.T).covariance_
            cov_2 = skl_cov.fit(class_2.T).covariance_

        # then fit on covariance
        self._fit(cov_1, cov_2)

        pick_filters = self.filters_[:self.n_components]
        X = np.asarray([np.dot(pick_filters, e) for e in epochs_data])

        # compute features (mean band power)
        X = (X ** 2).mean(axis=-1)

        # To standardize features
        self.mean_ = X.mean(axis=0)
        self.std_ = X.std(axis=0)

        return self
開發者ID:dengemann,項目名稱:mne-python,代碼行數:98,代碼來源:csp.py

示例10: LCMV

# 需要導入模塊: from sklearn.covariance import ShrunkCovariance [as 別名]
# 或者: from sklearn.covariance.ShrunkCovariance import fit [as 別名]
class LCMV(BaseEstimator, TransformerMixin):
    '''
    LCMV Spatial beamformer.

    Parameters
    ----------
    template : 1D array (n_channels)
        Spatial activation pattern of the component to extract.

    shrinkage : str | float (default: 'oas')
        Shrinkage parameter for the covariance matrix inversion. This can
        either be speficied as a number between 0 and 1, or as a string
        indicating which automated estimation method to use:

        'none': No shrinkage: emperical covariance
        'oas': Oracle approximation shrinkage
        'lw': Ledoit-Wolf approximation shrinkage

    center : bool (default: True)
        Whether to remove the channel mean before applying the filter.

    Attributes
    ----------
    W_ : 2D array (1 x n_channels)
        Row vector containing the filter weights.
    '''
    def __init__(self, template, shrinkage='oas', center=True):
        self.template = template
        self.template = np.asarray(template).flatten()[:, np.newaxis]
        self.center = center

        if center:
            self.template -= self.template.mean()

        if shrinkage == 'oas':
            self.cov = OAS
        elif shrinkage == 'lw':
            self.cov = LedoitWolf
        elif shrinkage == 'none':
            self.cov = EmpiricalCovariance
        elif type(shrinkage) == float or type(shrinkage) == int:
            self.cov = ShrunkCovariance(shrinkage=shrinkage)

    def fit(self, X, y=None):
        """Fit the beamformer to the data.

        Parameters
        ----------
        X : 3D array (n_channels, n_samples, n_trials)
            The trials.
        y : None
            Unused.
        """
        if self.center:
            X = X - X.mean(axis=0)

        # Concatenate trials
        cont_eeg = np.transpose(X, [0, 2, 1]).reshape((X.shape[0], -1))

        # Calculate spatial covariance matrix
        c = self.cov.fit(cont_eeg.T)
        sigma_x_i = c.precision_

        # Compute spatial LCMV filter
        self.W_ = sigma_x_i.dot(self.template)

        # Noise normalization
        self.W_ = self.W_.dot(
            np.linalg.inv(
                reduce(np.dot, [self.template.T, sigma_x_i, self.template])
            )
        )

        return self

    def transform(self, X):
        """Transform the data using the beamformer.

        Parameters
        ----------
        X : 3D array (n_channels, n_samples, n_trials)
            The trials.

        Returns
        -------
        X_trans : 3D array (1, n_samples, n_trials)
            The transformed data.
        """
        if self.center:
            X = X - X.mean(axis=0)

        n_channels = self.W_.shape[1]
        n_samples = X.shape[1]
        n_trials = X.shape[2]

        X_trans = np.zeros((n_channels, n_samples, n_trials))
        for i in range(n_trials):
            X_trans[:, :, i] = np.dot(self.W_.T, X[:, :, i])

        return X_trans
開發者ID:wmvanvliet,項目名稱:ERP-beamformer,代碼行數:102,代碼來源:erpbeamformer.py

示例11: SpatialBeamformer

# 需要導入模塊: from sklearn.covariance import ShrunkCovariance [as 別名]
# 或者: from sklearn.covariance.ShrunkCovariance import fit [as 別名]
class SpatialBeamformer(SpatialFilter):
    '''
    LCMV Spatial beamformer.

    Parameters
    ----------
    template : 1D array (n_channels)
        Spatial activation pattern of the component to extract.

    shrinkage : str | float (default: 'oas')
        Shrinkage parameter for the covariance matrix inversion. This can
        either be speficied as a number between 0 and 1, or as a string
        indicating which automated estimation method to use:

        'none': No shrinkage: emperical covariance
        'oas': Oracle approximation shrinkage
        'lw': Ledoit-Wolf approximation shrinkage

    center : bool (default: True)
        Whether to remove the channel mean before applying the filter.
    '''
    def __init__(self, template, shrinkage='oas', center=True):
        SpatialFilter.__init__(self, 1)
        self.template = template
        self.template = np.asarray(template).flatten()[:, np.newaxis]
        self.center = center

        if center:
            self.template -= self.template.mean()

        if shrinkage == 'oas':
            self.cov = OAS
        elif shrinkage == 'lw':
            self.cov = LedoitWolf
        elif shrinkage == 'none':
            self.cov = EmpiricalCovariance
        elif type(shrinkage) == float or type(shrinkage) == int:
            self.cov = ShrunkCovariance(shrinkage=shrinkage)

    def train_(self, d):
        if self.center:
            d = DataSet(d.data - d.data.mean(axis=0), default=d)
            d = baseline(d)

        # Calculate spatial covariance matrix
        c = self.cov.fit(concatenate_trials(d).X)
        sigma_x_i = c.precision_

        # Compute spatial LCMV filter
        self.W = sigma_x_i.dot(self.template)

        # Noise normalization
        self.W = self.W.dot(
            np.linalg.inv(
                reduce(np.dot, [self.template.T, sigma_x_i, self.template])
            )
        )

    def apply_(self, d):
        if self.center:
            d = DataSet(d.data - d.data.mean(axis=0), default=d)
            d = baseline(d)
        return SpatialFilter.apply_(self, d)
開發者ID:wmvanvliet,項目名稱:psychic,代碼行數:65,代碼來源:beamformer.py

示例12: TemplateBeamformer

# 需要導入模塊: from sklearn.covariance import ShrunkCovariance [as 別名]
# 或者: from sklearn.covariance.ShrunkCovariance import fit [as 別名]
class TemplateBeamformer(BaseNode):
    '''
    Spatio-temporal LCMV beamformer operating on a spatio-temporal template.

    Parameters
    ----------
    template : 2D array (n_channels, n_samples)
       Spatio-temporal activation pattern of the component to extract.

    shrinkage : str | float (default: 'oas')
        Shrinkage parameter for the covariance matrix inversion. This can
        either be speficied as a number between 0 and 1, or as a string
        indicating which automated estimation method to use:

        'none': No shrinkage: emperical covariance
        'oas': Oracle approximation shrinkage
        'lw': Ledoit-Wolf approximation shrinkage

    center : bool (default: True)
        Whether to remove the data mean before applying the filter.
    '''
    def __init__(self, template, shrinkage='oas', center=True):
        BaseNode.__init__(self)
        self.template = template
        self.template = np.atleast_2d(template)
        self.center = center

        if center:
            self.template -= self.template.mean()

        if shrinkage == 'oas':
            self.cov = OAS
        elif shrinkage == 'lw':
            self.cov = LedoitWolf
        elif shrinkage == 'none':
            self.cov = EmpiricalCovariance
        elif type(shrinkage) == float or type(shrinkage) == int:
            self.cov = ShrunkCovariance(shrinkage=shrinkage)

    def _center(self, d):
        data_mean = d.data.reshape(-1, len(d)).mean(axis=1)
        data_mean = data_mean.reshape(d.feat_shape + (1,))
        return DataSet(d.data - data_mean, default=d)

    def train_(self, d):
        if self.center:
            d = self._center(d)

        nsamples, ntrials = d.data.shape[1:]
        template = self.template[:, :nsamples]

        c = self.cov.fit(d.data.reshape(-1, ntrials).T)
        sigma_x_i = c.precision_

        template = self.template.flatten()[:, np.newaxis]
        self.W = sigma_x_i.dot(template)

        # Noise normalization
        self.W = self.W.dot(
            np.linalg.inv(reduce(np.dot, [template.T, sigma_x_i, template]))
        )

    def apply_(self, d):
        if self.center:
            d = self._center(d)

        ntrials = d.data.shape[2]
        X = self.W.T.dot(d.data.reshape(-1, ntrials))
        return DataSet(data=X, feat_lab=None, default=d)
開發者ID:wmvanvliet,項目名稱:psychic,代碼行數:71,代碼來源:beamformer.py


注:本文中的sklearn.covariance.ShrunkCovariance.fit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。