當前位置: 首頁>>代碼示例>>Python>>正文


Python covariance.OAS類代碼示例

本文整理匯總了Python中sklearn.covariance.OAS的典型用法代碼示例。如果您正苦於以下問題:Python OAS類的具體用法?Python OAS怎麽用?Python OAS使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了OAS類的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _gmm_from_memberships

def _gmm_from_memberships(data, memberships, covariance_type):
    clusters = set(memberships)
    n_clusters = len(clusters)
    gmm = GMM(n_components=n_clusters, params='m')
    gmm.weights_ = np.ones([n_clusters])/n_clusters
    gmm.means_ = np.zeros([n_clusters, data.shape[1]]) 
    if covariance_type == 'diag':
        gmm.covars_ = np.zeros([n_clusters, data.shape[1]])
    if covariance_type == 'spherical':
        gmm.covars_ = np.zeros([n_clusters])
    if covariance_type == 'full':
        gmm.covars_ = np.zeros([n_clusters, data.shape[1], data.shape[1]])

    for cluster in clusters:
        cluster = int(cluster)
        indices = (memberships == cluster)
        gmm.means_[cluster, :] = data[indices, :].mean(axis=0)
        if covariance_type in ['diag', 'spherical']:
            #TODO Fix covariance calculation, for now, return cov=1
            #D = np.diag(np.cov(data[indices, :].T))
            D = np.ones([data.shape[1]])
            if covariance_type == 'spherical':
                gmm.covars_[cluster] = D.mean()
            else:
                gmm.covars_[cluster] = D
        if covariance_type == 'full':
            cov_estimator = OAS()
            cov_estimator.fit(data[indices, :])
            gmm.covars_[cluster] = cov_estimator.covariance_
    return gmm
開發者ID:dimenwarper,項目名稱:scimitar,代碼行數:30,代碼來源:models.py

示例2: cov2corr


def cov2corr(cov):
    std_ = np.sqrt(np.diag(cov))
    corr = cov / np.outer(std_, std_)
    return corr

if has_sklearn:
    from sklearn.covariance import LedoitWolf, OAS, MCD

    lw = LedoitWolf(store_precision=False)
    lw.fit(rr, assume_centered=False)
    cov_lw = lw.covariance_
    corr_lw = cov2corr(cov_lw)

    oas = OAS(store_precision=False)
    oas.fit(rr, assume_centered=False)
    cov_oas = oas.covariance_
    corr_oas = cov2corr(cov_oas)

    mcd = MCD()#.fit(rr, reweight=None)
    mcd.fit(rr, assume_centered=False)
    cov_mcd = mcd.covariance_
    corr_mcd = cov2corr(cov_mcd)

    titles = ['raw correlation', 'lw', 'oas', 'mcd']
    normcolor = None
    fig = plt.figure()
    for i, c in enumerate([rrcorr, corr_lw, corr_oas, corr_mcd]):
    #for i, c in enumerate([np.cov(rr, rowvar=0), cov_lw, cov_oas, cov_mcd]):
        ax = fig.add_subplot(2,2,i+1)
開發者ID:0ceangypsy,項目名稱:statsmodels,代碼行數:29,代碼來源:ex_ratereturn.py

示例3: test_oas

def test_oas():
    """Tests OAS module on a simple dataset.

    """
    # test shrinkage coeff on a simple data set
    oa = OAS()
    oa.fit(X, assume_centered=True)
    assert_almost_equal(oa.shrinkage_, 0.018740, 4)
    assert_almost_equal(oa.score(X, assume_centered=True), -5.03605, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X, assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_)
    scov.fit(X, assume_centered=True)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    oa = OAS()
    oa.fit(X_1d, assume_centered=True)
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d, assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False)
    oa.fit(X, assume_centered=True)
    assert_almost_equal(oa.score(X, assume_centered=True), -5.03605, 4)
    assert(oa.precision_ is None)

    ### Same tests without assuming centered data
    # test shrinkage coeff on a simple data set
    oa = OAS()
    oa.fit(X)
    assert_almost_equal(oa.shrinkage_, 0.020236, 4)
    assert_almost_equal(oa.score(X), 2.079025, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_)
    scov.fit(X)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    oa = OAS()
    oa.fit(X_1d)
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False)
    oa.fit(X)
    assert_almost_equal(oa.score(X), 2.079025, 4)
    assert(oa.precision_ is None)
開發者ID:forkloop,項目名稱:scikit-learn,代碼行數:62,代碼來源:test_covariance.py

示例4: GridSearchCV

loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov))

# #############################################################################
# Compare different approaches to setting the parameter

# GridSearch for an optimal shrinkage coefficient
tuned_parameters = [{'shrinkage': shrinkages}]
cv = GridSearchCV(ShrunkCovariance(), tuned_parameters, cv=5)
cv.fit(X_train)

# Ledoit-Wolf optimal shrinkage coefficient estimate
lw = LedoitWolf()
loglik_lw = lw.fit(X_train).score(X_test)

# OAS coefficient estimate
oa = OAS()
loglik_oa = oa.fit(X_train).score(X_test)

# #############################################################################
# Plot results
fig = plt.figure()
plt.title("Regularized covariance: likelihood and shrinkage coefficient")
plt.xlabel('Regularization parameter: shrinkage coefficient')
plt.ylabel('Error: negative log-likelihood on test data')
# range shrinkage curve
plt.loglog(shrinkages, negative_logliks, label="Negative log-likelihood")

plt.plot(plt.xlim(), 2 * [loglik_real], '--r',
         label="Real covariance likelihood")

# adjust view
開發者ID:MartinThoma,項目名稱:scikit-learn,代碼行數:31,代碼來源:plot_covariance_estimation.py

示例5: test_oas

def test_oas():
    """Tests OAS module on a simple dataset.

    """
    # test shrinkage coeff on a simple data set
    X_centered = X - X.mean(axis=0)
    oa = OAS(assume_centered=True)
    oa.fit(X_centered)
    shrinkage_ = oa.shrinkage_
    score_ = oa.score(X_centered)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_centered,
                                                 assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_, assume_centered=True)
    scov.fit(X_centered)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    oa = OAS(assume_centered=True)
    oa.fit(X_1d)
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d, assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False, assume_centered=True)
    oa.fit(X_centered)
    assert_almost_equal(oa.score(X_centered), score_, 4)
    assert(oa.precision_ is None)

    ### Same tests without assuming centered data
    # test shrinkage coeff on a simple data set
    oa = OAS()
    oa.fit(X)
    assert_almost_equal(oa.shrinkage_, shrinkage_, 4)
    assert_almost_equal(oa.score(X), score_, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_)
    scov.fit(X)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    oa = OAS()
    oa.fit(X_1d)
    oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_)
    assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4)

    # test with one sample
    X_1sample = np.arange(5)
    oa = OAS()
    with warnings.catch_warnings(record=True):
        oa.fit(X_1sample)

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False)
    oa.fit(X)
    assert_almost_equal(oa.score(X), score_, 4)
    assert(oa.precision_ is None)
開發者ID:GbalsaC,項目名稱:bitnamiP,代碼行數:70,代碼來源:test_covariance.py

示例6: enumerate

repeat = 100
lw_mse = np.zeros((n_samples_range.size, repeat))
oa_mse = np.zeros((n_samples_range.size, repeat))
lw_shrinkage = np.zeros((n_samples_range.size, repeat))
oa_shrinkage = np.zeros((n_samples_range.size, repeat))
for i, n_samples in enumerate(n_samples_range):
    for j in range(repeat):
        X = np.dot(
            np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)

        lw = LedoitWolf(store_precision=False, assume_centered=True)
        lw.fit(X)
        lw_mse[i, j] = lw.error_norm(real_cov, scaling=False)
        lw_shrinkage[i, j] = lw.shrinkage_

        oa = OAS(store_precision=False, assume_centered=True)
        oa.fit(X)
        oa_mse[i, j] = oa.error_norm(real_cov, scaling=False)
        oa_shrinkage[i, j] = oa.shrinkage_

# plot MSE
plt.subplot(2, 1, 1)
plt.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1),
             label='Ledoit-Wolf', color='g')
plt.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1),
             label='OAS', color='r')
plt.ylabel("Squared error")
plt.legend(loc="upper right")
plt.title("Comparison of covariance estimators")
plt.xlim(5, 31)
開發者ID:0x0all,項目名稱:scikit-learn,代碼行數:30,代碼來源:plot_lw_vs_oas.py

示例7: range

print timecourse_files

# roll through the subjects
print np.shape(timecourse_data)[0]
for i in range(np.shape(timecourse_data)[0]) :
#for i in range(10) :

    print i
    
    # extract the timecourses for this subejct
    subject_timecourses = timecourse_data[i, : ,:]
    #print np.shape(subject_timecourses)
    
    # calculate Pearson covariance
    X = scale(subject_timecourses, axis=1)
    cov = np.dot(X, np.transpose(X)) / np.shape(X)[1]
    print cov[:5, :5]
    print logm(cov)[:5, :5]
    
    # calculate sparse inverse covariance (precision) matrix
    model = OAS(store_precision=False, assume_centered=True)
    model.fit(np.transpose(X))
    cov = model.covariance_
    OAS_matrices[i, :] = np.reshape(cov, (1, 8100))
    #print cov[:5, :5]
    foo = logm(cov)
    #print logm(cov[:5, :5])
    
    
## save the data
np.savetxt('/home/jonyoung/IoP_data/Data/connectivity_data/OAS_data.csv', OAS_matrices, delimiter=',')
開發者ID:jmyoung36,項目名稱:basic_connectivity,代碼行數:31,代碼來源:make_OAS.py

示例8: LedoitWolf

X_train = np.dot(base_X_train, coloring_matrix)
X_test = np.dot(base_X_test, coloring_matrix)

###############################################################################
# Compute Ledoit-Wolf and Covariances on a grid of shrinkages

from sklearn.covariance import LedoitWolf, OAS, ShrunkCovariance, \
    log_likelihood, empirical_covariance

# Ledoit-Wolf optimal shrinkage coefficient estimate
lw = LedoitWolf()
loglik_lw = lw.fit(X_train, assume_centered=True).score(
    X_test, assume_centered=True)

# OAS coefficient estimate
oa = OAS()
loglik_oa = oa.fit(X_train, assume_centered=True).score(
    X_test, assume_centered=True)

# spanning a range of possible shrinkage coefficient values
shrinkages = np.logspace(-3, 0, 30)
negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(
        X_train, assume_centered=True).score(X_test, assume_centered=True) \
                         for s in shrinkages]

# getting the likelihood under the real model
real_cov = np.dot(coloring_matrix.T, coloring_matrix)
emp_cov = empirical_covariance(X_train)
loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov))

###############################################################################
開發者ID:aravindgd,項目名稱:scikit-learn,代碼行數:31,代碼來源:plot_covariance_estimation.py

示例9: test_oas

def test_oas():
    # Tests OAS module on a simple dataset.
    # test shrinkage coeff on a simple data set
    X_centered = X - X.mean(axis=0)
    oa = OAS(assume_centered=True)
    oa.fit(X_centered)
    shrinkage_ = oa.shrinkage_
    score_ = oa.score(X_centered)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shrinkage_from_mle = oas(X_centered,
                                                 assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shrinkage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_, assume_centered=True)
    scov.fit(X_centered)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0:1]
    oa = OAS(assume_centered=True)
    oa.fit(X_1d)
    oa_cov_from_mle, oa_shrinkage_from_mle = oas(X_1d, assume_centered=True)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shrinkage_from_mle, oa.shrinkage_)
    assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4)

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False, assume_centered=True)
    oa.fit(X_centered)
    assert_almost_equal(oa.score(X_centered), score_, 4)
    assert(oa.precision_ is None)

    # Same tests without assuming centered data--------------------------------
    # test shrinkage coeff on a simple data set
    oa = OAS()
    oa.fit(X)
    assert_almost_equal(oa.shrinkage_, shrinkage_, 4)
    assert_almost_equal(oa.score(X), score_, 4)
    # compare shrunk covariance obtained from data and from MLE estimate
    oa_cov_from_mle, oa_shrinkage_from_mle = oas(X)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shrinkage_from_mle, oa.shrinkage_)
    # compare estimates given by OAS and ShrunkCovariance
    scov = ShrunkCovariance(shrinkage=oa.shrinkage_)
    scov.fit(X)
    assert_array_almost_equal(scov.covariance_, oa.covariance_, 4)

    # test with n_features = 1
    X_1d = X[:, 0].reshape((-1, 1))
    oa = OAS()
    oa.fit(X_1d)
    oa_cov_from_mle, oa_shrinkage_from_mle = oas(X_1d)
    assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4)
    assert_almost_equal(oa_shrinkage_from_mle, oa.shrinkage_)
    assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4)

    # test with one sample
    # warning should be raised when using only 1 sample
    X_1sample = np.arange(5).reshape(1, 5)
    oa = OAS()
    assert_warns(UserWarning, oa.fit, X_1sample)
    assert_array_almost_equal(oa.covariance_,
                              np.zeros(shape=(5, 5), dtype=np.float64))

    # test shrinkage coeff on a simple data set (without saving precision)
    oa = OAS(store_precision=False)
    oa.fit(X)
    assert_almost_equal(oa.score(X), score_, 4)
    assert(oa.precision_ is None)
開發者ID:AlexisMignon,項目名稱:scikit-learn,代碼行數:70,代碼來源:test_covariance.py

示例10: enumerate

repeat = 100
lw_mse = np.zeros((n_samples_range.size, repeat))
oa_mse = np.zeros((n_samples_range.size, repeat))
lw_shrinkage = np.zeros((n_samples_range.size, repeat))
oa_shrinkage = np.zeros((n_samples_range.size, repeat))
for i, n_samples in enumerate(n_samples_range):
    for j in range(repeat):
        X = np.dot(
            np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)

        lw = LedoitWolf(store_precision=False)
        lw.fit(X, assume_centered=True)
        lw_mse[i,j] = lw.error_norm(real_cov, scaling=False)
        lw_shrinkage[i,j] = lw.shrinkage_

        oa = OAS(store_precision=False)
        oa.fit(X, assume_centered=True)
        oa_mse[i,j] = oa.error_norm(real_cov, scaling=False)
        oa_shrinkage[i,j] = oa.shrinkage_

# plot MSE
pl.subplot(2,1,1)
pl.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1),
            label='Ledoit-Wolf', color='g')
pl.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1),
            label='OAS', color='r')
pl.ylabel("Squared error")
pl.legend(loc="upper right")
pl.title("Comparison of covariance estimators")
pl.xlim(5, 31)
開發者ID:Yangqing,項目名稱:scikit-learn,代碼行數:30,代碼來源:plot_lw_vs_oas.py


注:本文中的sklearn.covariance.OAS類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。