本文整理匯總了Python中sklearn.cluster.bicluster.SpectralCoclustering.get_indices方法的典型用法代碼示例。如果您正苦於以下問題:Python SpectralCoclustering.get_indices方法的具體用法?Python SpectralCoclustering.get_indices怎麽用?Python SpectralCoclustering.get_indices使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.cluster.bicluster.SpectralCoclustering
的用法示例。
在下文中一共展示了SpectralCoclustering.get_indices方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: find_disjoint_biclusters
# 需要導入模塊: from sklearn.cluster.bicluster import SpectralCoclustering [as 別名]
# 或者: from sklearn.cluster.bicluster.SpectralCoclustering import get_indices [as 別名]
def find_disjoint_biclusters(self, biclusters_number=50):
data = np.asarray_chkfinite(self.matrix)
data[data == 0] = 0.000001
coclustering = SpectralCoclustering(n_clusters=biclusters_number, random_state=0)
coclustering.fit(data)
biclusters = set()
for i in range(biclusters_number):
rows, columns = coclustering.get_indices(i)
row_set = set(rows)
columns_set = set(columns)
if len(row_set) > 0 and len(columns_set) > 0:
density = self._calculate_box_cluster_density(row_set, columns_set)
odd_columns = set()
for column in columns_set:
col_density = self._calculate_column_density(column, row_set)
if col_density < density / 4:
odd_columns.add(column)
columns_set.difference_update(odd_columns)
if len(columns_set) == 0:
continue
odd_rows = set()
for row in row_set:
row_density = self._calculate_row_density(row, columns_set)
if row_density < density / 4:
odd_rows.add(row)
row_set.difference_update(odd_rows)
if len(row_set) > 0 and len(columns_set) > 0:
density = self._calculate_box_cluster_density(row_set, columns_set)
biclusters.add(Bicluster(row_set, columns_set, density))
return biclusters
示例2: print_similarity_matrix
# 需要導入模塊: from sklearn.cluster.bicluster import SpectralCoclustering [as 別名]
# 或者: from sklearn.cluster.bicluster.SpectralCoclustering import get_indices [as 別名]
def print_similarity_matrix(sphns, model, model2=None):
print " ",
for phn1 in sphns:
print phn1, " ",
print ""
m = np.ndarray((len(sphns), len(sphns)), dtype=np.float32)
for i, phn1 in enumerate(sphns):
print phn1.ljust(4) + ":",
for j, phn2 in enumerate(sphns):
sim = model.similarity(phn1, phn2)
if model2 != None:
sim -= model2.similarity(phn1, phn2)
print "%0.2f" % sim,
m[i][j] = sim
print ""
phn_order = [phn for phn in sphns]
if BICLUSTER:
#model = SpectralBiclustering(n_clusters=4, method='log',
model = SpectralCoclustering(n_clusters=n_clusters,
random_state=0)
model.fit(m)
print "INDICES:",
indices = [model.get_indices(i) for i in xrange(n_clusters)]
print indices
tmp = []
for i in xrange(n_clusters):
tmp.extend([phn_order[indices[i][0][j]] for j in xrange(len(indices[i][0]))])
phn_order = tmp
fit_data = m[np.argsort(model.row_labels_)]
fit_data = fit_data[:, np.argsort(model.column_labels_)]
m = fit_data
return phn_order, m
示例3: biclustering
# 需要導入模塊: from sklearn.cluster.bicluster import SpectralCoclustering [as 別名]
# 或者: from sklearn.cluster.bicluster.SpectralCoclustering import get_indices [as 別名]
def biclustering(input,num_clusters):
global agent1_dict
data = np.matrix(input)
model = SpectralCoclustering(n_clusters=num_clusters,random_state=0)
model.fit(data)
#create agent 1 dictionary
agent1_dict = {}
for c in range(num_clusters):
agent1_dict[c] = model.get_indices(c)[0].tolist() #0 row indices, 1 column indices
return agent1_dict
示例4: biclustering
# 需要導入模塊: from sklearn.cluster.bicluster import SpectralCoclustering [as 別名]
# 或者: from sklearn.cluster.bicluster.SpectralCoclustering import get_indices [as 別名]
def biclustering(data,num_clusters):
clusters = {}
data = np.asmatrix(data)
model = SpectralCoclustering(n_clusters=num_clusters,random_state=0)
#model = SpectralBiclustering(n_clusters=num_clusters)
model.fit(data)
for c in range(num_clusters):
clusters[c] = model.get_indices(c)[0].tolist() #0 row indices, 1 column indices
#fit_data = data[np.argsort(model.row_labels_)]
#fit_data = fit_data[:, np.argsort(model.column_labels_)]
#plot(fit_data)
return clusters
示例5: biclustering
# 需要導入模塊: from sklearn.cluster.bicluster import SpectralCoclustering [as 別名]
# 或者: from sklearn.cluster.bicluster.SpectralCoclustering import get_indices [as 別名]
def biclustering(input,num_clusters):
global agent1_dict
data = np.matrix(input)
model = SpectralCoclustering(n_clusters=num_clusters,random_state=0)
model.fit(data)
#create agent 1 dictionary
agent1_dict = {}
for c in range(num_clusters):
agent1_dict[c] = model.get_indices(c)[0].tolist() #0 row indices, 1 column indices
fit_data = data[np.argsort(model.row_labels_)]
fit_data = fit_data[:, np.argsort(model.column_labels_)]
plot(fit_data)
return agent1_dict
示例6: biclustering
# 需要導入模塊: from sklearn.cluster.bicluster import SpectralCoclustering [as 別名]
# 或者: from sklearn.cluster.bicluster.SpectralCoclustering import get_indices [as 別名]
def biclustering(input_list,num_clusters):
global agent1_dict
#clustering agent 1
data = np.matrix(input_list)
#plot(data)#original data
#model = SpectralBiclustering(n_clusters=num_clusters) #Biclustering refer http://scikit-learn.org/stable/auto_examples/bicluster/plot_spectral_biclustering.html#example-bicluster-plot-spectral-biclustering-py
model = SpectralCoclustering(n_clusters=num_clusters,random_state=0) #Coclustering refer http://scikit-learn.org/stable/auto_examples/bicluster/plot_spectral_coclustering.html
model.fit(data)
#create agent 1 dictionary
agent1_dict = {}
for c in range(num_clusters):
agent1_dict[c] = model.get_indices(c)[0].tolist() #0 row indices, 1 column indices
fit_data = data[np.argsort(model.row_labels_)]
fit_data = fit_data[:, np.argsort(model.column_labels_)]
plot(fit_data)
return agent1_dict
示例7: list
# 需要導入模塊: from sklearn.cluster.bicluster import SpectralCoclustering [as 別名]
# 或者: from sklearn.cluster.bicluster.SpectralCoclustering import get_indices [as 別名]
weight = X[rows[:, np.newaxis], cols].sum()
cut = (X[row_complement[:, np.newaxis], cols].sum() +
X[rows[:, np.newaxis], col_complement].sum())
return cut / weight
bicluster_ncuts = list(bicluster_ncut(i)
for i in xrange(len(newsgroups.target_names)))
best_idx = np.argsort(bicluster_ncuts)[:5]
print()
print("Best biclusters:")
print("----------------")
for idx, cluster in enumerate(best_idx):
n_rows, n_cols = cocluster.get_shape(cluster)
cluster_docs, cluster_words = cocluster.get_indices(cluster)
if not len(cluster_docs) or not len(cluster_words):
continue
# categories
cluster_categories = list(document_names[i] for i in cluster_docs)
counter = Counter(cluster_categories)
cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100,
name)
for name, c in counter.most_common()[:3])
# words
out_of_cluster_docs = cocluster.row_labels_ != cluster
out_of_cluster_docs = np.where(out_of_cluster_docs)[0]
word_col = X[:, cluster_words]
word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) -
示例8: range
# 需要導入模塊: from sklearn.cluster.bicluster import SpectralCoclustering [as 別名]
# 或者: from sklearn.cluster.bicluster.SpectralCoclustering import get_indices [as 別名]
avg_data[row_sel, col_sel] = np.average(data[row_sel, col_sel])
avg_data = avg_data[np.argsort(model.row_labels_)]
avg_data = avg_data[:, np.argsort(model.column_labels_)]
plt.matshow(avg_data, cmap=plt.cm.Blues)
plt.title("Average cluster intensity")
plt.savefig('%s_averaged.png' % (identifier), bbox_inches='tight')
if args.write:
print "Writing clusters to database."
# No need to clean up here, just overwrite by _id.
for c in range(n_clusters):
(nr, nc) = model.get_shape(c)
(row_ind, col_ind) = model.get_indices(c)
cluster_val = None
if nr > 25 or nc > 50:
print "Nulling cluster %d: shape (%d, %d)" % (c, nr, nc)
else:
cluster_val = c
for ri in row_ind:
data_list[ri]['cluster'] = cluster_val
datastream.save(data_list[ri])
for ci in col_ind:
events_list[ci]['cluster'] = cluster_val
events.save(events_list[ci])
# plt.show()