本文整理匯總了Python中skills.numerics.Gaussian類的典型用法代碼示例。如果您正苦於以下問題:Python Gaussian類的具體用法?Python Gaussian怎麽用?Python Gaussian使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Gaussian類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: log_normalization
def log_normalization(self):
marginal = self.variables[0].value
message = self.messages[0].value
message_from_variable = marginal / message
return (-Gaussian.log_product_normalization(message_from_variable, message) +
log(Gaussian.cumulative_to((message_from_variable.mean - self.epsilon) / message_from_variable.stdev)))
示例2: testLogProductNormalization
def testLogProductNormalization(self):
standard_normal = Gaussian(0, 1)
lpn = Gaussian.log_product_normalization(standard_normal, standard_normal)
answer = -1.2655121234846454
self.assertAlmostEqual(answer, lpn, None,
"testLogProductNormalization lpn expected %.15f, got %.15f" % (answer, lpn),
GaussianDistributionTest.ERROR_TOLERANCE)
m1s2 = Gaussian(1.0, 2.0)
m3s4 = Gaussian(3.0, 4.0)
lpn2 = Gaussian.log_product_normalization(m1s2, m3s4)
answer = -2.5168046699816684
self.assertAlmostEqual(answer, lpn2, None,
"testLogProductNormalization lpn2 expected %.15f, got %.15f" % (answer, lpn2),
GaussianDistributionTest.ERROR_TOLERANCE)
示例3: update_message_variable
def update_message_variable(self, message, variable):
old_marginal = copy(variable.value)
old_message = copy(message.value)
message_from_var = old_marginal / old_message
c = message_from_var.precision
d = message_from_var.precision_mean
sqrt_c = sqrt(c)
d_on_sqrt_c = d / sqrt_c
epsilon_times_sqrt_c = self.epsilon * sqrt_c
d = message_from_var.precision_mean
denom = 1.0 - w_exceeds_margin(d_on_sqrt_c, epsilon_times_sqrt_c)
new_precision = c / denom
new_precision_mean = (d + sqrt_c * v_exceeds_margin(d_on_sqrt_c, epsilon_times_sqrt_c)) / denom
new_marginal = Gaussian.from_precision_mean(new_precision_mean, new_precision)
new_message = (old_message * new_marginal) / old_marginal
message.value = new_message
variable.value = new_marginal
return new_marginal - old_marginal
示例4: w_within_margin
def w_within_margin(team_performance_difference, draw_margin):
team_performance_difference_abs = abs(team_performance_difference)
denominator = (Gaussian.cumulative_to(draw_margin - team_performance_difference_abs) -
Gaussian.cumulative_to(-draw_margin - team_performance_difference_abs))
if denominator < 2.222758749e-162:
return 1.0
vt = v_within_margin(team_performance_difference_abs, draw_margin)
return (vt ** 2 +
(
(draw_margin - team_performance_difference_abs) *
Gaussian.at(draw_margin - team_performance_difference_abs) -
(-draw_margin - team_performance_difference_abs) *
Gaussian.at(-draw_margin - team_performance_difference_abs)) / denominator)
示例5: w_exceeds_margin
def w_exceeds_margin(team_performance_difference, draw_margin):
denominator = Gaussian.cumulative_to(team_performance_difference - draw_margin)
if denominator < 2.222758749e-162:
if team_performance_difference < 0.0:
return 1.0
return 0.0
v_win = v_exceeds_margin(team_performance_difference, draw_margin)
return v_win * (v_win + team_performance_difference - draw_margin)
示例6: create_variable_to_message_binding
def create_variable_to_message_binding(self, variable):
new_distribution = Gaussian.from_precision_mean(0.0, 0.0)
binding = Factor.create_variable_to_message_binding_with_message(
self,
variable,
Message(new_distribution, "message from {} to {}".format(self, variable))
)
return binding
示例7: v_within_margin
def v_within_margin(team_performance_difference, draw_margin):
team_performance_difference_abs = abs(team_performance_difference)
denominator = (
Gaussian.cumulative_to(draw_margin - team_performance_difference_abs) -
Gaussian.cumulative_to(-draw_margin - team_performance_difference_abs))
if denominator < 2.222758749e-162:
if team_performance_difference < 0.0:
return -team_performance_difference - draw_margin
return -team_performance_difference + draw_margin
numerator = (Gaussian.at(-draw_margin - team_performance_difference_abs) -
Gaussian.at(draw_margin - team_performance_difference_abs))
if team_performance_difference < 0.0:
return -numerator / denominator
return numerator / denominator
示例8: testLogRatioNormalization
def testLogRatioNormalization(self):
m1s2 = Gaussian(1.0, 2.0)
m3s4 = Gaussian(3.0, 4.0)
lrn = Gaussian.log_ratio_normalization(m1s2, m3s4)
answer = 2.6157405972171204
self.assertAlmostEqual(answer, lrn, None,
"testLogRatioNormalization lrn expected %.15f, got %.15f" % (answer, lrn),
GaussianDistributionTest.ERROR_TOLERANCE)
示例9: partial_update
def partial_update(self, prior, full_posterior, update_percentage):
prior_gaussian = Gaussian(prior.mean, prior.stdev)
posterior_gaussian = Gaussian(full_posterior.mean, full_posterior.stdev)
partial_precision_diff = update_percentage * (posterior_gaussian.precision - prior_gaussian.precision)
partial_precision_mean_diff = update_percentage * (posterior_gaussian.precision_mean - prior_gaussian.precision_mean)
partial_posterior_gaussian = Gaussian.from_precision_mean(
prior_gaussian.precision_mean + partial_precision_mean_diff,
prior_gaussian.precision + partial_precision_diff)
return Rating(partial_posterior_gaussian.mean,
partial_posterior_gaussian.stdev)
示例10: __init__
def __init__(self, teams, team_ranks, game_info):
game_info = TrueSkillGameInfo.ensure_game_info(game_info)
FactorGraph.__init__(self)
self.prior_layer = PlayerPriorValuesToSkillsLayer(self, teams)
self.game_info = game_info
new_factory = VariableFactory(lambda: Gaussian.from_precision_mean(0.0, 0.0))
self.variable_factory = new_factory
self.layers = [
self.prior_layer,
PlayerSkillsToPerformancesLayer(self),
PlayerPerformancesToTeamPerformancesLayer(self),
IteratedTeamDifferencesInnerLayer(self,
TeamPerformancesToTeamPerformanceDifferencesLayer(self),
TeamDifferencesComparisonLayer(self, team_ranks))
]
示例11: update_helper
def update_helper(self, message1, message2, variable1, variable2):
message1_value = copy(message1.value)
message2_value = copy(message2.value)
marginal1 = copy(variable1.value)
marginal2 = copy(variable2.value)
a = self.precision / (self.precision + marginal2.precision - message2_value.precision)
new_message = Gaussian.from_precision_mean(
a * (marginal2.precision_mean - message2_value.precision_mean),
a * (marginal2.precision - message2_value.precision))
old_marginal_without_message = marginal1 / message1_value
new_marginal = old_marginal_without_message * new_message
message1.value = new_message
variable1.value = new_marginal
return new_marginal - marginal1
示例12: send_message_variable
def send_message_variable(self, message, variable):
marginal = variable.value
message_value = message.value
log_z = Gaussian.log_product_normalization(marginal, message_value)
variable.value = marginal * message_value
return log_z
示例13: __init__
def __init__(self, mean, variance, variable):
GaussianFactor.__init__(self, "Prior value going to %s" % variable)
self.new_message = Gaussian(mean, sqrt(variance))
new_message = Message(Gaussian.from_precision_mean(0, 0),
"message from %s to %s" % (self, variable))
self.create_variable_to_message_binding_with_message(variable, new_message)
示例14: v_exceeds_margin
def v_exceeds_margin(team_performance_difference, draw_margin):
denominator = Gaussian.cumulative_to(team_performance_difference - draw_margin)
if (denominator < 2.22275874e-162):
return -team_performance_difference + draw_margin
return Gaussian.at(team_performance_difference - draw_margin) / denominator
示例15: testAt
def testAt(self):
expected = 0.352065326764300
answer = Gaussian.at(0.5)
self.assertAlmostEqual(expected, answer, None,
"testAt expected %.15f, got %.15f" % (expected, answer),
GaussianDistributionTest.ERROR_TOLERANCE)