當前位置: 首頁>>代碼示例>>Python>>正文


Python TimeStepping.insertNonSmoothProblem方法代碼示例

本文整理匯總了Python中siconos.kernel.TimeStepping.insertNonSmoothProblem方法的典型用法代碼示例。如果您正苦於以下問題:Python TimeStepping.insertNonSmoothProblem方法的具體用法?Python TimeStepping.insertNonSmoothProblem怎麽用?Python TimeStepping.insertNonSmoothProblem使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在siconos.kernel.TimeStepping的用法示例。


在下文中一共展示了TimeStepping.insertNonSmoothProblem方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_serialization4

# 需要導入模塊: from siconos.kernel import TimeStepping [as 別名]
# 或者: from siconos.kernel.TimeStepping import insertNonSmoothProblem [as 別名]
def test_serialization4():
    from siconos.kernel import LagrangianLinearTIDS, NewtonImpactNSL, \
        LagrangianLinearTIR, Interaction, Model, MoreauJeanOSI, TimeDiscretisation, LCP, TimeStepping

    from numpy import array, eye, empty

    t0 = 0       # start time
    T = 10       # end time
    h = 0.005    # time step
    r = 0.1      # ball radius
    g = 9.81     # gravity
    m = 1        # ball mass
    e = 0.9      # restitution coeficient
    theta = 0.5  # theta scheme

    #
    # dynamical system
    #
    x = array([1, 0, 0])  # initial position
    v = array([0, 0, 0])  # initial velocity
    mass = eye(3)         # mass matrix
    mass[2, 2] = 3./5 * r * r

    # the dynamical system
    ball = LagrangianLinearTIDS(x, v, mass)

    # set external forces
    weight = array([-m * g, 0, 0])
    ball.setFExtPtr(weight)

    #
    # Interactions
    #

    # ball-floor
    H = array([[1, 0, 0]])

    nslaw = NewtonImpactNSL(e)
    relation = LagrangianLinearTIR(H)
    inter = Interaction(1, nslaw, relation)

    #
    # Model
    #
    first_bouncingBall = Model(t0, T)

    # add the dynamical system to the non smooth dynamical system
    first_bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball)

    # link the interaction and the dynamical system
    first_bouncingBall.nonSmoothDynamicalSystem().link(inter, ball)

    #
    # Simulation
    #

    # (1) OneStepIntegrators
    OSI = MoreauJeanOSI(theta)

    # (2) Time discretisation --
    t = TimeDiscretisation(t0, h)

    # (3) one step non smooth problem
    osnspb = LCP()

    # (4) Simulation setup with (1) (2) (3)
    s = TimeStepping(t)
    s.insertIntegrator(OSI)
    s.insertNonSmoothProblem(osnspb)

    # end of model definition

    #
    # computation
    #

    # simulation initialization
    first_bouncingBall.setSimulation(s)
    first_bouncingBall.initialize()

    #
    # save and load data from xml and .dat
    #
    from siconos.io.io_base import save, load
    save(first_bouncingBall, "bouncingBall.xml")

    bouncingBall = load("bouncingBall.xml")

    # the number of time steps
    N = (T-t0)/h+1

    # Get the values to be plotted
    # ->saved in a matrix dataPlot

    dataPlot = empty((N, 5))

    #
    # numpy pointers on dense Siconos vectors
    #
    q = ball.q()
#.........這裏部分代碼省略.........
開發者ID:radarsat1,項目名稱:siconos,代碼行數:103,代碼來源:test_serialization.py

示例2: Model

# 需要導入模塊: from siconos.kernel import TimeStepping [as 別名]
# 或者: from siconos.kernel.TimeStepping import insertNonSmoothProblem [as 別名]
filippov = Model(t0,T)
filippov.setNonSmoothDynamicalSystemPtr(myNSDS)

td = TimeDiscretisation(t0, h)
s = TimeStepping(td)

myIntegrator = EulerMoreauOSI(process, theta)
s.insertIntegrator(myIntegrator)


#TODO python <- SICONOS_RELAY_LEMKE
# access dparam

osnspb = Relay()
s.insertNonSmoothProblem(osnspb)
s.setComputeResiduY(True)
s.setComputeResiduR(True)

filippov.initialize(s);

# matrix to save data
dataPlot = empty((N+1,5))
control = empty((N+1,))
dataPlot[0, 0] = t0
dataPlot[0, 1:3] = process.x()
dataPlot[0, 3] = myProcessInteraction.lambda_(0)[0]
dataPlot[0, 4] = myProcessInteraction.lambda_(0)[1]
# time loop
k = 1
while(s.hasNextEvent()):
開發者ID:fperignon,項目名稱:siconos,代碼行數:32,代碼來源:ZhuravlevTwisting.py


注:本文中的siconos.kernel.TimeStepping.insertNonSmoothProblem方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。