當前位置: 首頁>>代碼示例>>Python>>正文


Python Features.CombinedFeatures類代碼示例

本文整理匯總了Python中shogun.Features.CombinedFeatures的典型用法代碼示例。如果您正苦於以下問題:Python CombinedFeatures類的具體用法?Python CombinedFeatures怎麽用?Python CombinedFeatures使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了CombinedFeatures類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: evaluate

def evaluate(options, svm, kernel, features, motifs):
    """Evaluate examples using a trained kernel"""
    query = MotifFinder(finder_settings=MotifFinderSettings(kirmes_ini.MOTIF_LENGTH, options.window_width))
    query.setFastaFile(options.query)
    query.setMotifs(options.qgff)
    qmotifs, qpositions = query.getResults()
    feats_query = CombinedFeatures()
    wds_svm = EasySVM.EasySVM(kirmes_ini.WDS_KERNEL_PARAMETERS)
    try:
        assert set(qmotifs.keys()).issuperset(set(motifs))
    except AssertionError:
        print "The motif positions in the query sequence are incomplete, there are no positions for:"
        print set(motifs).difference(qmotifs.keys())
        raise
    for motif in motifs:
        feats_query.append_feature_obj(wds_svm.createFeatures(qmotifs[motif]))
    query_positions = array(qpositions, dtype=float64)
    query_positions = query_positions.T
    rbf_svm = EasySVM.EasySVM(kirmes_ini.RBF_KERNEL_PARAMETERS)
    feats_query.append_feature_obj(rbf_svm.createFeatures(query_positions))
    kernel.init(features, feats_query)
    out = svm.classify().get_labels()
    qgenes = query.getGenes()
    ret_str = ""
    print "#example\toutput\tsplit"
    for i in xrange(len(out)):
        if out[i] >= 0:
            classif = "\tpositive\t"
        else:
            classif = "\tnegative\t"
        ret_str += qgenes[i] + classif + str(out[i]) + "\n"
        print str(i) + "\t" + str(out[i]) + "\t0"
    return ret_str
開發者ID:veniciusgrjr,項目名稱:oqtans_tools,代碼行數:33,代碼來源:kirmes.py

示例2: get_weighted_spectrum_kernel

def get_weighted_spectrum_kernel(subfeats_list, options):
	"""build weighted spectrum kernel with non-redundant k-mer list (removing reverse complement)

	Arguments:
	subfeats_list -- list of sub-feature objects
	options -- object containing option data 

	Return:
	CombinedFeatures of StringWord(Ulong)Features, CombinedKernel of CommWord(Ulong)StringKernel 
	"""
	kmerlen = options.kmerlen
	kmerlen2 = options.kmerlen2

	subkernels = 0
	kernel = CombinedKernel()
	feats = CombinedFeatures()

	for subfeats in subfeats_list:
		feats.append_feature_obj(subfeats)

	for k in xrange(kmerlen, kmerlen2+1):
		if k <= 8:
			subkernel = CommWordStringKernel(10, False)
		else:
			subkernel = CommUlongStringKernel(10, False)

		kernel.append_kernel(subkernel)
		subkernels+=1

	kernel.init(feats, feats)

	kernel.set_subkernel_weights(numpy.array([1/float(subkernels)]*subkernels, numpy.dtype('float64')))

	return kernel
開發者ID:aleasoni,項目名稱:Summer-Research-2013,代碼行數:34,代碼來源:kmersvm_train.py

示例3: create_combined_wd_features

def create_combined_wd_features(instances, feat_type):
    """
    creates a combined wd feature object
    """

    num_features = len(instances[0])
    
    # contruct combined features
    feat = CombinedFeatures()
        
    for idx in range(num_features): 
    
        # cut column idx
        data = [instance[idx] for instance in instances]
    
        seq_len = len(data[0])
        for seq in data:
            if len(seq) != seq_len:
                print "warning, seq lengths differ", len(seq), seq_len, "in", idx, "num_feat", num_features
    
        tmp_feat = get_wd_features(data, feat_type)
        feat.append_feature_obj(tmp_feat)

    
    return feat
開發者ID:cwidmer,項目名稱:multitask,代碼行數:25,代碼來源:shogun_factory_new.py

示例4: evaluation_cross_validation_multiclass_storage

def evaluation_cross_validation_multiclass_storage(traindat=traindat, label_traindat=label_traindat):
    from shogun.Evaluation import CrossValidation, CrossValidationResult
    from shogun.Evaluation import CrossValidationPrintOutput
    from shogun.Evaluation import CrossValidationMKLStorage, CrossValidationMulticlassStorage
    from shogun.Evaluation import MulticlassAccuracy, F1Measure
    from shogun.Evaluation import StratifiedCrossValidationSplitting
    from shogun.Features import MulticlassLabels
    from shogun.Features import RealFeatures, CombinedFeatures
    from shogun.Kernel import GaussianKernel, CombinedKernel
    from shogun.Classifier import MKLMulticlass
    from shogun.Mathematics import Statistics, MSG_DEBUG

    # training data, combined features all on same data
    features=RealFeatures(traindat)
    comb_features=CombinedFeatures()
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    labels=MulticlassLabels(label_traindat)
    
    # kernel, different Gaussians combined
    kernel=CombinedKernel()
    kernel.append_kernel(GaussianKernel(10, 0.1))
    kernel.append_kernel(GaussianKernel(10, 1))
    kernel.append_kernel(GaussianKernel(10, 2))

    # create mkl using libsvm, due to a mem-bug, interleaved is not possible
    svm=MKLMulticlass(1.0,kernel,labels);
    svm.set_kernel(kernel);

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but the standard
    # "StratifiedCrossValidationSplitting" is also available
    splitting_strategy=StratifiedCrossValidationSplitting(labels, 5)

    # evaluation method
    evaluation_criterium=MulticlassAccuracy()

    # cross-validation instance
    cross_validation=CrossValidation(svm, comb_features, labels,
        splitting_strategy, evaluation_criterium)
    cross_validation.set_autolock(False)

    # append cross vlaidation output classes
    #cross_validation.add_cross_validation_output(CrossValidationPrintOutput())
    #mkl_storage=CrossValidationMKLStorage()
    #cross_validation.add_cross_validation_output(mkl_storage)
    multiclass_storage=CrossValidationMulticlassStorage()
    multiclass_storage.append_binary_evaluation(F1Measure())
    cross_validation.add_cross_validation_output(multiclass_storage)
    cross_validation.set_num_runs(3)
    
    # perform cross-validation
    result=cross_validation.evaluate()

    roc_0_0_0 = multiclass_storage.get_fold_ROC(0,0,0)
    #print roc_0_0_0
    auc_0_0_0 = multiclass_storage.get_fold_evaluation_result(0,0,0,0)
    #print auc_0_0_0
    return roc_0_0_0, auc_0_0_0
開發者ID:lgatto,項目名稱:shogun,代碼行數:60,代碼來源:evaluation_cross_validation_multiclass_storage.py

示例5: predict

    def predict(self, seq, chunk_size = int(10e6)):
        """
        predicts on whole contig, splits up sequence in chunks of size chunk_size
        """

        seq_len = len(seq)
        num_chunks = int(numpy.ceil(float(seq_len) / float(chunk_size)))
        assert(num_chunks > 0)

    	sys.stderr.write("number of chunks for contig: %i\n" % (num_chunks))

        start = 0
        stop = min(chunk_size, seq_len)
		
        out = []

        # iterate over chunks
        for chunk_idx in range(num_chunks):

            sys.stderr.write("processing chunk #%i\n" % (chunk_idx))

            assert (start < stop)
            chunk = seq[start:stop]

            assert(len(self.sensors) > 0)
            tf = CombinedFeatures()
            for i in xrange(len(self.sensors)):
                f = self.sensors[i].get_test_features(chunk, self.window)
                tf.append_feature_obj(f)

            sys.stderr.write("initialising kernel...")
            self.kernel.init(self.svs, tf)
            sys.stderr.write("..done\n")

            self.svm.set_kernel(self.kernel)
            lab_out = self.svm.apply()

            # work around problem with get_labels()
            tmp_out = [lab_out.get_label(idx) for idx in range(0, lab_out.get_num_labels())]
            assert(len(tmp_out) > 0)
            out.extend(tmp_out)

            print "len out", len(out)

            # increment chunk
            start = stop
            stop = min(stop+chunk_size, seq_len)


        l = (-self.window[0]) * [-42]
        r = self.window[1] * [-42]

        # concatenate
        ret = l + out + r

        assert(len(ret) == len(seq))

        return ret
開發者ID:AlexBinder,項目名稱:shogun,代碼行數:58,代碼來源:signal_sensor.py

示例6: training_run

def training_run(options):
    """Conduct a training run and return a trained SVM kernel"""
    settings = MotifFinderSettings(kirmes_ini.MOTIF_LENGTH, options.window_width, options.replace)
    positives = MotifFinder(finder_settings=settings)
    positives.setFastaFile(options.positives)
    positives.setMotifs(options.pgff)
    pmotifs, ppositions = positives.getResults()
    negatives = MotifFinder(finder_settings=settings)
    negatives.setFastaFile(options.negatives)
    negatives.setMotifs(options.ngff)
    nmotifs, npositions = negatives.getResults()

    wds_kparams = kirmes_ini.WDS_KERNEL_PARAMETERS
    wds_svm = EasySVM.EasySVM(wds_kparams)
    num_positives = len(pmotifs.values()[0])
    num_negatives = len(nmotifs.values()[0])
    # Creating Kernel Objects
    kernel = CombinedKernel()
    features = CombinedFeatures()
    kernel_array = []
    motifs = pmotifs.keys()
    motifs.sort()
    # Adding Kmer Kernels
    for motif in motifs:
        all_examples = pmotifs[motif] + nmotifs[motif]
        motif_features = wds_svm.createFeatures(all_examples)
        wds_kernel = WeightedDegreePositionStringKernel(motif_features, motif_features, wds_kparams["degree"])
        wds_kernel.set_shifts(wds_kparams["shift"] * ones(wds_kparams["seqlength"], dtype=int32))
        features.append_feature_obj(motif_features)
        kernel_array.append(wds_kernel)
        kernel.append_kernel(wds_kernel)
    rbf_svm = EasySVM.EasySVM(kirmes_ini.RBF_KERNEL_PARAMETERS)
    positions = array(ppositions + npositions, dtype=float64).T
    position_features = rbf_svm.createFeatures(positions)
    features.append_feature_obj(position_features)
    motif_labels = append(ones(num_positives), -ones(num_negatives))
    complete_labels = Labels(motif_labels)
    rbf_kernel = GaussianKernel(position_features, position_features, kirmes_ini.RBF_KERNEL_PARAMETERS["width"])
    kernel_array.append(rbf_kernel)
    kernel.append_kernel(rbf_kernel)
    # Kernel init
    kernel.init(features, features)
    kernel.set_cache_size(kirmes_ini.K_CACHE_SIZE)
    svm = LibSVM(kirmes_ini.K_COMBINED_C, kernel, complete_labels)
    svm.parallel.set_num_threads(kirmes_ini.K_NUM_THREADS)
    # Training
    svm.train()
    if not os.path.exists(options.output_path):
        os.mkdir(options.output_path)
    html = {}
    if options.contrib:
        html["contrib"] = contrib(svm, kernel, motif_labels, kernel_array, motifs)
    if options.logos:
        html["poims"] = poims(svm, kernel, kernel_array, motifs, options.output_path)
    if options.query:
        html["query"] = evaluate(options, svm, kernel, features, motifs)
    htmlize(html, options.output_html)
開發者ID:veniciusgrjr,項目名稱:oqtans_tools,代碼行數:57,代碼來源:kirmes.py

示例7: evaluation_cross_validation_mkl_weight_storage

def evaluation_cross_validation_mkl_weight_storage(traindat=traindat, label_traindat=label_traindat):
    from shogun.Evaluation import CrossValidation, CrossValidationResult
    from shogun.Evaluation import CrossValidationPrintOutput
    from shogun.Evaluation import CrossValidationMKLStorage
    from shogun.Evaluation import ContingencyTableEvaluation, ACCURACY
    from shogun.Evaluation import StratifiedCrossValidationSplitting
    from shogun.Features import BinaryLabels
    from shogun.Features import RealFeatures, CombinedFeatures
    from shogun.Kernel import GaussianKernel, CombinedKernel
    from shogun.Classifier import LibSVM, MKLClassification
    from shogun.Mathematics import Statistics

    # training data, combined features all on same data
    features=RealFeatures(traindat)
    comb_features=CombinedFeatures()
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    labels=BinaryLabels(label_traindat)
    
    # kernel, different Gaussians combined
    kernel=CombinedKernel()
    kernel.append_kernel(GaussianKernel(10, 0.1))
    kernel.append_kernel(GaussianKernel(10, 1))
    kernel.append_kernel(GaussianKernel(10, 2))

    # create mkl using libsvm, due to a mem-bug, interleaved is not possible
    svm=MKLClassification(LibSVM());
    svm.set_interleaved_optimization_enabled(False);
    svm.set_kernel(kernel);

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but the standard
    # "StratifiedCrossValidationSplitting" is also available
    splitting_strategy=StratifiedCrossValidationSplitting(labels, 5)

    # evaluation method
    evaluation_criterium=ContingencyTableEvaluation(ACCURACY)

    # cross-validation instance
    cross_validation=CrossValidation(svm, comb_features, labels,
        splitting_strategy, evaluation_criterium)
    cross_validation.set_autolock(False)

    # append cross vlaidation output classes
    #cross_validation.add_cross_validation_output(CrossValidationPrintOutput())
    mkl_storage=CrossValidationMKLStorage()
    cross_validation.add_cross_validation_output(mkl_storage)
    cross_validation.set_num_runs(3)
    
    # perform cross-validation
    result=cross_validation.evaluate()

    # print mkl weights
    weights=mkl_storage.get_mkl_weights()
開發者ID:Argram,項目名稱:shogun,代碼行數:55,代碼來源:evaluation_cross_validation_mkl_weight_storage.py

示例8: statistics_linear_time_mmd_kernel_choice

def statistics_linear_time_mmd_kernel_choice():
	from shogun.Features import RealFeatures, CombinedFeatures
	from shogun.Kernel import GaussianKernel, CombinedKernel
	from shogun.Statistics import LinearTimeMMD
	from shogun.Statistics import BOOTSTRAP, MMD1_GAUSSIAN

	# note that the linear time statistic is designed for much larger datasets
	n=50000
	dim=5
	difference=2

	# data is standard normal distributed. only one dimension of Y has a mean
	# shift of difference
	(X,Y)=gen_data.create_mean_data(n,dim,difference)
	
	# concatenate since MMD class takes data as one feature object
	# (it is possible to give two, but then data is copied)
	Z=concatenate((X,Y), axis=1)
	print "dimension means of X", [mean(x) for x in X]
	print "dimension means of Y", [mean(x) for x in Y]

	# create kernels/features to choose from
	# here: just a bunch of Gaussian Kernels with different widths
	# real sigmas are 2^-5, ..., 2^10
	sigmas=array([pow(2,x) for x in range(-5,10)])
	
	# shogun has a different parametrization of the Gaussian kernel
	shogun_sigmas=array([x*x*2 for x in sigmas])
	
	# We will use multiple kernels
	kernel=CombinedKernel()
	
	# two separate feature objects here, could also be one with appended data
	features=CombinedFeatures()
	
	# all kernels work on same features
	for i in range(len(sigmas)):
		kernel.append_kernel(GaussianKernel(10, shogun_sigmas[i]))
		features.append_feature_obj(RealFeatures(Z))
	
	mmd=LinearTimeMMD(kernel,features, n)
	
	print "start learning kernel weights"
	mmd.set_opt_regularization_eps(10E-5)
	mmd.set_opt_low_cut(10E-5)
	mmd.set_opt_max_iterations(1000)
	mmd.set_opt_epsilon(10E-7)
	mmd.optimize_kernel_weights()
	weights=kernel.get_subkernel_weights()
	print "learned weights:", weights
	#pyplot.plot(array(range(len(sigmas))), weights)
	#pyplot.show()
	print "index of max weight", weights.argmax()
開發者ID:jimloco,項目名稱:shogun,代碼行數:53,代碼來源:statistics_linear_time_mmd_kernel_choice.py

示例9: statistics_linear_time_mmd_kernel_choice

def statistics_linear_time_mmd_kernel_choice():
	from shogun.Features import RealFeatures, CombinedFeatures
	from shogun.Features import DataGenerator
	from shogun.Kernel import GaussianKernel, CombinedKernel
	from shogun.Statistics import LinearTimeMMD
	from shogun.Statistics import BOOTSTRAP, MMD1_GAUSSIAN

	# note that the linear time statistic is designed for much larger datasets
	n=50000
	dim=5
	difference=2

	# use data generator class to produce example data
	# in pratice, this generate data function could be replaced by a method
	# that obtains data from a stream
	data=DataGenerator.generate_mean_data(n,dim,difference)
	
	print "dimension means of X", mean(data.T[0:n].T)
	print "dimension means of Y", mean(data.T[n:2*n+1].T)

	# create kernels/features to choose from
	# here: just a bunch of Gaussian Kernels with different widths
	# real sigmas are 2^-5, ..., 2^10
	sigmas=array([pow(2,x) for x in range(-5,10)])
	
	# shogun has a different parametrization of the Gaussian kernel
	shogun_sigmas=array([x*x*2 for x in sigmas])
	
	# We will use multiple kernels
	kernel=CombinedKernel()
	
	# two separate feature objects here, could also be one with appended data
	features=CombinedFeatures()
	
	# all kernels work on same features
	for i in range(len(sigmas)):
		kernel.append_kernel(GaussianKernel(10, shogun_sigmas[i]))
		features.append_feature_obj(RealFeatures(data))
	
	mmd=LinearTimeMMD(kernel,features, n)
	
	print "start learning kernel weights"
	mmd.set_opt_regularization_eps(10E-5)
	mmd.set_opt_low_cut(10E-5)
	mmd.set_opt_max_iterations(1000)
	mmd.set_opt_epsilon(10E-7)
	mmd.optimize_kernel_weights()
	weights=kernel.get_subkernel_weights()
	print "learned weights:", weights
	#pyplot.plot(array(range(len(sigmas))), weights)
	#pyplot.show()
	print "index of max weight", weights.argmax()
開發者ID:coodoing,項目名稱:shogun,代碼行數:52,代碼來源:statistics_linear_time_mmd_kernel_choice.py

示例10: create_promoter_features

def create_promoter_features(data, param):
    """
    creates promoter combined features
    
    @param examples:
    @param param:
    """

    print "creating promoter features"

    (center, left, right) = split_data_promoter(data, param["center_offset"], param["center_pos"])

    # set up base features
    feat_center = StringCharFeatures(DNA)
    feat_center.set_features(center)
    feat_left = get_spectrum_features(left)
    feat_right = get_spectrum_features(right)

    # construct combined features
    feat = CombinedFeatures()
    feat.append_feature_obj(feat_center)
    feat.append_feature_obj(feat_left)
    feat.append_feature_obj(feat_right)

    return feat
開發者ID:cwidmer,項目名稱:multitask,代碼行數:25,代碼來源:shogun_factory_new.py

示例11: _predict

    def _predict(self, predictor, examples, task_name):
        """
        make prediction on examples using trained predictor

        @param predictor: trained predictor (task_id, num_nodes, combined_kernel, predictor)
        @type predictor: tuple<int, int, CombinedKernel, SVM>
        @param examples: list of examples
        @type examples: list<object>
        @param task_name: task name
        @type task_name: str
        """

        (task_id, combined_kernel, svm, param) = predictor

        # shogun data
        base_feat = shogun_factory.create_features(examples, param)
                
        # construct combined kernel
        feat = CombinedFeatures()
        
        for i in xrange(combined_kernel.get_num_subkernels()):
            feat.append_feature_obj(base_feat)

            # fetch kernel normalizer
            normalizer = combined_kernel.get_kernel(i).get_normalizer()
            
            # cast using dedicated SWIG-helper function
            normalizer = KernelNormalizerToMultitaskKernelMaskPairNormalizer(normalizer)
            
            # set task vector
            normalizer.set_task_vector_rhs([task_id]*len(examples))


        combined_kernel = svm.get_kernel()
        combined_kernel.init(combined_kernel.get_lhs(), feat)
        
        # predict
        out = svm.classify().get_labels()

        # predict
        #out = svm.classify(feat).get_labels()
        
        
        return out
開發者ID:cwidmer,項目名稱:multitask,代碼行數:44,代碼來源:method_multitask_kernel_mkl_mask_simplified.py

示例12: construct_features

def construct_features(features):
    """
    makes a list
    """

    feat_all = [inst for inst in features]
    feat_lhs = [inst[0:15] for inst in features]
    feat_rhs = [inst[15:] for inst in features]

    feat_wd = get_wd_features(feat_all)
    feat_spec_1 = get_spectrum_features(feat_lhs, order=3)
    feat_spec_2 = get_spectrum_features(feat_rhs, order=3)

    feat_comb = CombinedFeatures()
    feat_comb.append_feature_obj(feat_wd)
    feat_comb.append_feature_obj(feat_spec_1)
    feat_comb.append_feature_obj(feat_spec_2)

    return feat_comb
開發者ID:monalisag,項目名稱:shogun,代碼行數:19,代碼來源:serialization_string_kernels_modular.py

示例13: create_combined_spectrum_features

def create_combined_spectrum_features(instances, feat_type):
    """
    creates a combined spectrum feature object
    """

    num_features = len(instances[0])
    
    # contruct combined features
    feat = CombinedFeatures()
        
    for idx in range(num_features): 
    
        # cut column idx
        data = [instance[idx] for instance in instances]
    
        tmp_feat = get_spectrum_features(data, feat_type)
        feat.append_features(tmp_feat)

    
    return feat
開發者ID:cwidmer,項目名稱:multitask,代碼行數:20,代碼來源:shogun_factory_new.py

示例14: mkl_binclass_modular

def mkl_binclass_modular (train_data, testdata, train_labels, test_labels, d1, d2):
        # create some Gaussian train/test matrix
    	tfeats = RealFeatures(train_data)
    	tkernel = GaussianKernel(128, d1)
    	tkernel.init(tfeats, tfeats)
    	K_train = tkernel.get_kernel_matrix()

    	pfeats = RealFeatures(test_data)
    	tkernel.init(tfeats, pfeats)
    	K_test = tkernel.get_kernel_matrix()

    	# create combined train features
    	feats_train = CombinedFeatures()
    	feats_train.append_feature_obj(RealFeatures(train_data))

    	# and corresponding combined kernel
    	kernel = CombinedKernel()
    	kernel.append_kernel(CustomKernel(K_train))
    	kernel.append_kernel(GaussianKernel(128, d2))
    	kernel.init(feats_train, feats_train)

    	# train mkl
    	labels = Labels(train_labels)
    	mkl = MKLClassification()
	
        # not to use svmlight
        mkl.set_interleaved_optimization_enabled(0)

    	# which norm to use for MKL
    	mkl.set_mkl_norm(2)

    	# set cost (neg, pos)
    	mkl.set_C(1, 1)

    	# set kernel and labels
    	mkl.set_kernel(kernel)
    	mkl.set_labels(labels)

    	# train
    	mkl.train()

    	# test
	# create combined test features
    	feats_pred = CombinedFeatures()
    	feats_pred.append_feature_obj(RealFeatures(test_data))

    	# and corresponding combined kernel
    	kernel = CombinedKernel()
    	kernel.append_kernel(CustomKernel(K_test))
    	kernel.append_kernel(GaussianKernel(128, d2))
    	kernel.init(feats_train, feats_pred)

	# and classify
    	mkl.set_kernel(kernel)
    	output = mkl.apply().get_labels()
	output = [1.0 if i>0 else -1.0 for i in output]
	accu = len(where(output == test_labels)[0]) / float(len(output))
	return accu
開發者ID:leiding326,項目名稱:data-science,代碼行數:58,代碼來源:mkl_binclass_modular.py

示例15: init_weighted_spectrum_kernel

def init_weighted_spectrum_kernel(kern, subfeats_list_lhs, subfeats_list_rhs):
	"""initialize weighted spectrum kernel (wrapper function)
	"""
	feats_lhs = CombinedFeatures()
	feats_rhs = CombinedFeatures()

	for subfeats in subfeats_list_lhs:
		feats_lhs.append_feature_obj(subfeats)

	for subfeats in subfeats_list_rhs:
		feats_rhs.append_feature_obj(subfeats)

	kern.init(feats_lhs, feats_rhs)
開發者ID:aleasoni,項目名稱:Summer-Research-2013,代碼行數:13,代碼來源:kmersvm_train.py


注:本文中的shogun.Features.CombinedFeatures類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。