本文整理匯總了Python中sfepy.fem.Domain類的典型用法代碼示例。如果您正苦於以下問題:Python Domain類的具體用法?Python Domain怎麽用?Python Domain使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Domain類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
def main():
parser = OptionParser(usage=usage, version="%prog")
options, args = parser.parse_args()
if (len(args) == 1):
mesh_filename = args[0];
else:
parser.print_help(),
return
mesh = Mesh('mesh', mesh_filename)
print mesh
domain = Domain('domain', mesh)
print domain
reg = domain.create_region('Surface',
'nodes of surface',
{'can_cells' : True})
dual_mesh = DualMesh(reg)
dual_mesh.save('dual_mesh.mesh',)
dual_mesh.save_axes('axes.vtk',)
print dual_mesh
示例2: from_conf
def from_conf(conf, options):
import sfepy
from sfepy.fem import Mesh, Domain, H1NodalVolumeField
mesh = Mesh.from_file('meshes/2d/rectangle_tri.mesh',
prefix_dir=sfepy.data_dir)
domain = Domain('domain', mesh)
dim = domain.shape.dim
min_x, max_x = domain.get_mesh_bounding_box()[:,0]
eps = 1e-8 * (max_x - min_x)
omega = domain.create_region('Omega', 'all')
gamma1 = domain.create_region('Gamma1',
'vertices in x < %.10f' % (min_x + eps),
'facet')
gamma2 = domain.create_region('Gamma2',
'vertices in x > %.10f' % (max_x - eps),
'facet')
field = H1NodalVolumeField('fu', nm.float64, 'vector', omega,
approx_order=2)
test = Test(conf=conf, options=options, dim=dim,
omega=omega, gamma1=gamma1, gamma2=gamma2,
field=field)
return test
示例3: refine_mesh
def refine_mesh(filename, level):
"""
Uniformly refine `level`-times a mesh given by `filename`.
The refined mesh is saved to a file with name constructed from base
name of `filename` and `level`-times appended `'_r'` suffix.
Parameters
----------
filename : str
The mesh file name.
level : int
The refinement level.
"""
import os
from sfepy.base.base import output
from sfepy.fem import Mesh, Domain
if level > 0:
mesh = Mesh.from_file(filename)
domain = Domain(mesh.name, mesh)
for ii in range(level):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
suffix = os.path.splitext(filename)[1]
filename = domain.name + suffix
domain.mesh.write(filename, io='auto')
return filename
示例4: from_conf
def from_conf(conf, options):
mesh = Mesh.from_file("meshes/2d/square_unit_tri.mesh", prefix_dir=sfepy.data_dir)
domain = Domain("domain", mesh)
omega = domain.create_region("Omega", "all")
field = H1NodalVolumeField("linear", nm.float64, "scalar", omega, approx_order=1)
test = Test(conf=conf, options=options, omega=omega, field=field)
return test
示例5: main
def main():
from sfepy import data_dir
parser = OptionParser(usage=usage, version="%prog")
parser.add_option("-s", "--show", action="store_true", dest="show", default=False, help=help["show"])
options, args = parser.parse_args()
mesh = Mesh.from_file(data_dir + "/meshes/2d/rectangle_tri.mesh")
domain = Domain("domain", mesh)
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
eps = 1e-8 * (max_x - min_x)
omega = domain.create_region("Omega", "all")
gamma1 = domain.create_region("Gamma1", "nodes in x < %.10f" % (min_x + eps))
gamma2 = domain.create_region("Gamma2", "nodes in x > %.10f" % (max_x - eps))
field = Field("fu", nm.float64, "vector", omega, space="H1", poly_space_base="lagrange", approx_order=2)
u = FieldVariable("u", "unknown", field, mesh.dim)
v = FieldVariable("v", "test", field, mesh.dim, primary_var_name="u")
m = Material("m", lam=1.0, mu=1.0)
f = Material("f", val=[[0.02], [0.01]])
integral = Integral("i", order=3)
t1 = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u)
t2 = Term.new("dw_volume_lvf(f.val, v)", integral, omega, f=f, v=v)
eq = Equation("balance", t1 + t2)
eqs = Equations([eq])
fix_u = EssentialBC("fix_u", gamma1, {"u.all": 0.0})
bc_fun = Function("shift_u_fun", shift_u_fun, extra_args={"shift": 0.01})
shift_u = EssentialBC("shift_u", gamma2, {"u.0": bc_fun})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = ProblemDefinition("elasticity", equations=eqs, nls=nls, ls=ls)
pb.save_regions_as_groups("regions")
pb.time_update(ebcs=Conditions([fix_u, shift_u]))
vec = pb.solve()
print nls_status
pb.save_state("linear_elasticity.vtk", vec)
if options.show:
view = Viewer("linear_elasticity.vtk")
view(vector_mode="warp_norm", rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
示例6: from_conf
def from_conf(conf, options):
mesh = Mesh.from_file('meshes/2d/square_unit_tri.mesh',
prefix_dir=sfepy.data_dir)
domain = Domain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field('linear', nm.float64, 'scalar', omega,
space='H1', poly_space_base='lagrange', approx_order=1)
test = Test(conf=conf, options=options, omega=omega, field=field)
return test
示例7: test_interpolation_two_meshes
def test_interpolation_two_meshes(self):
from sfepy import data_dir
from sfepy.fem import Mesh, Domain, H1NodalVolumeField, Variables
m1 = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh')
m2 = Mesh('target mesh', data_dir + '/meshes/3d/cube_medium_tetra.mesh')
m2.coors *= 2.0
bbox = m1.get_bounding_box()
dd = bbox[1,:] - bbox[0,:]
data = nm.sin(4.0 * nm.pi * m1.coors[:,0:1] / dd[0]) \
* nm.cos(4.0 * nm.pi * m1.coors[:,1:2] / dd[1])
variables1 = {
'u' : ('unknown field', 'scalar_tp', 0),
'v' : ('test field', 'scalar_tp', 'u'),
}
variables2 = {
'u' : ('unknown field', 'scalar_si', 0),
'v' : ('test field', 'scalar_si', 'u'),
}
d1 = Domain('d1', m1)
omega1 = d1.create_region('Omega', 'all')
field1 = H1NodalVolumeField('scalar_tp', nm.float64, (1,1), omega1,
approx_order=1)
ff1 = {field1.name : field1}
d2 = Domain('d2', m2)
omega2 = d2.create_region('Omega', 'all')
field2 = H1NodalVolumeField('scalar_si', nm.float64, (1,1), omega2,
approx_order=0)
ff2 = {field2.name : field2}
vv1 = Variables.from_conf(transform_variables(variables1), ff1)
u1 = vv1['u']
u1.set_from_mesh_vertices(data)
vv2 = Variables.from_conf(transform_variables(variables2), ff2)
u2 = vv2['u']
# Performs interpolation, if other field differs from self.field
# or, in particular, is defined on a different mesh.
u2.set_from_other(u1, strategy='interpolation', close_limit=0.1)
fname = in_dir(self.options.out_dir)
u1.save_as_mesh(fname('test_mesh_interp_block_scalar.vtk'))
u2.save_as_mesh(fname('test_mesh_interp_cube_scalar.vtk'))
return True
示例8: test_normals
def test_normals(self):
"""
Check orientations of surface normals on the reference elements.
"""
import sfepy
from sfepy.fem import Mesh, Domain, Integral
from sfepy.fem.poly_spaces import PolySpace
from sfepy.fem.mappings import SurfaceMapping
from sfepy.linalg import normalize_vectors
ok = True
for geom in ['2_3', '2_4', '3_4', '3_8']:
mesh = Mesh.from_file('meshes/elements/%s_1.mesh' % geom,
prefix_dir=sfepy.data_dir)
domain = Domain('domain', mesh)
surface = domain.create_region('Surface', 'nodes of surface')
domain.create_surface_group(surface)
sd = domain.surface_groups[0][surface.name]
coors = domain.get_mesh_coors()
gel = domain.geom_els[geom].surface_facet
ps = PolySpace.any_from_args('aux', gel, 1)
mapping = SurfaceMapping(coors, sd.get_connectivity(), ps)
integral = Integral('i', order=1)
vals, weights = integral.get_qp(gel.name)
# Evaluate just in the first quadrature point...
geo = mapping.get_mapping(vals[:1], weights[:1])
expected = expected_normals[geom].copy()
normalize_vectors(expected)
_ok = nm.allclose(expected, geo.normal[:, 0, :, 0],
rtol=0.0, atol=1e-14)
self.report('%s: %s' % (geom, _ok))
if not _ok:
self.report('expected:')
self.report(expected)
self.report('actual:')
self.report(geo.normal[:, 0, :, 0])
ok = ok and _ok
return ok
示例9: do_interpolation
def do_interpolation(m2, m1, data, field_name, force=False):
"""Interpolate data from m1 to m2. """
from sfepy.fem import Domain, H1NodalVolumeField, Variables
fields = {
'scalar_si' : ((1,1), 'Omega', 2),
'vector_si' : ((3,1), 'Omega', 2),
'scalar_tp' : ((1,1), 'Omega', 1),
'vector_tp' : ((3,1), 'Omega', 1),
}
d1 = Domain('d1', m1)
omega1 = d1.create_region('Omega', 'all')
f = fields[field_name]
field1 = H1NodalVolumeField('f', nm.float64, f[0], d1.regions[f[1]],
approx_order=f[2])
ff = {field1.name : field1}
vv = Variables.from_conf(transform_variables(variables), ff)
u1 = vv['u']
u1.set_from_mesh_vertices(data)
d2 = Domain('d2', m2)
omega2 = d2.create_region('Omega', 'all')
field2 = H1NodalVolumeField('f', nm.float64, f[0], d2.regions[f[1]],
approx_order=f[2])
ff2 = {field2.name : field2}
vv2 = Variables.from_conf(transform_variables(variables), ff2)
u2 = vv2['u']
if not force:
# Performs interpolation, if other field differs from self.field
# or, in particular, is defined on a different mesh.
u2.set_from_other(u1, strategy='interpolation', close_limit=0.5)
else:
coors = u2.field.get_coor()
vals = u1.evaluate_at(coors, close_limit=0.5)
u2.set_data(vals)
return u1, u2
示例10: test_invariance_qp
def test_invariance_qp(self):
from sfepy import data_dir
from sfepy.fem import (Mesh, Domain, H1NodalVolumeField,
Variables, Integral)
from sfepy.terms import Term
from sfepy.fem.mappings import get_physical_qps
mesh = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh')
bbox = mesh.get_bounding_box()
dd = bbox[1,:] - bbox[0,:]
data = nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / dd[0]) \
* nm.cos(4.0 * nm.pi * mesh.coors[:,1:2] / dd[1])
variables = {
'u' : ('unknown field', 'scalar_tp', 0),
'v' : ('test field', 'scalar_tp', 'u'),
}
domain = Domain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = H1NodalVolumeField('scalar_tp', nm.float64, 1, omega,
approx_order=1)
ff = {field.name : field}
vv = Variables.from_conf(transform_variables(variables), ff)
u = vv['u']
u.set_from_mesh_vertices(data)
integral = Integral('i', order=2)
term = Term.new('ev_volume_integrate(u)', integral, omega, u=u)
term.setup()
val1, _ = term.evaluate(mode='qp')
val1 = val1.ravel()
qps = get_physical_qps(omega, integral)
coors = qps.get_merged_values()
val2 = u.evaluate_at(coors).ravel()
self.report('max. difference:', nm.abs(val1 - val2).max())
ok = nm.allclose(val1, val2, rtol=0.0, atol=1e-12)
self.report('invariance in qp: %s' % ok)
return ok
示例11: from_conf
def from_conf(conf, options):
from sfepy.fem import Mesh, Domain, Integral
domains = []
for filename in filename_meshes:
mesh = Mesh.from_file(filename)
domain = Domain('domain_%s' % mesh.name.replace(data_dir, ''),
mesh)
domain.create_region('Omega', 'all')
domain.create_region('Gamma', 'vertices of surface', 'facet')
domains.append(domain)
integral = Integral('i', order=3)
test = Test(domains=domains, integral=integral,
conf=conf, options=options)
return test
示例12: test_projection_tri_quad
def test_projection_tri_quad(self):
from sfepy.fem.projections import make_l2_projection
source = FieldVariable('us', 'unknown', self.field, 1)
coors = self.field.get_coor()
vals = nm.sin(2.0 * nm.pi * coors[:,0] * coors[:,1])
source.data_from_any(vals)
name = op.join(self.options.out_dir,
'test_projection_tri_quad_source.vtk')
source.save_as_mesh(name)
mesh = Mesh.from_file('meshes/2d/square_quad.mesh',
prefix_dir=sfepy.data_dir)
domain = Domain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field('bilinear', nm.float64, 'scalar', omega,
space='H1', poly_space_base='lagrange', approx_order=1)
target = FieldVariable('ut', 'unknown', field, 1)
make_l2_projection(target, source)
name = op.join(self.options.out_dir,
'test_projection_tri_quad_target.vtk')
target.save_as_mesh(name)
bbox = self.field.domain.get_mesh_bounding_box()
x = nm.linspace(bbox[0, 0] + 0.001, bbox[1, 0] - 0.001, 20)
y = nm.linspace(bbox[0, 1] + 0.001, bbox[1, 1] - 0.001, 20)
xx, yy = nm.meshgrid(x, y)
test_coors = nm.c_[xx.ravel(), yy.ravel()].copy()
vec1 = source.evaluate_at(test_coors)
vec2 = target.evaluate_at(test_coors)
ok = (nm.abs(vec1 - vec2) < 0.01).all()
return ok
示例13: from_conf
def from_conf(conf, options):
from sfepy.fem import Mesh, Domain, Integral
domains = []
for filename in filename_meshes:
mesh = Mesh.from_file(filename)
domain = Domain('domain_%s' % mesh.name.replace(data_dir, ''),
mesh)
domain.create_region('Omega', 'all')
domain.create_region('Gamma', 'nodes of surface')
domains.append(domain)
integrals = {'Omega' : Integral('iv', kind='v', order=3),
'Gamma' : Integral('is', kind='s', order=3)}
test = Test(domains=domains, integrals=integrals,
conf=conf, options=options)
return test
示例14: mesh_hook
def mesh_hook(mesh, mode):
"""
Load and refine a mesh here.
"""
if mode == 'read':
mesh = Mesh.from_file(base_mesh)
domain = Domain(mesh.name, mesh)
for ii in range(3):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
domain.mesh.name = '2_4_2_refined'
return domain.mesh
elif mode == 'write':
pass
示例15: test_projection_tri_quad
def test_projection_tri_quad(self):
from sfepy.fem.projections import make_l2_projection
source = FieldVariable("us", "unknown", self.field, 1)
coors = self.field.get_coor()
vals = nm.sin(2.0 * nm.pi * coors[:, 0] * coors[:, 1])
source.data_from_any(vals)
name = op.join(self.options.out_dir, "test_projection_tri_quad_source.vtk")
source.save_as_mesh(name)
mesh = Mesh.from_file("meshes/2d/square_quad.mesh", prefix_dir=sfepy.data_dir)
domain = Domain("domain", mesh)
omega = domain.create_region("Omega", "all")
field = H1NodalVolumeField("bilinear", nm.float64, "scalar", omega, approx_order=1)
target = FieldVariable("ut", "unknown", field, 1)
make_l2_projection(target, source)
name = op.join(self.options.out_dir, "test_projection_tri_quad_target.vtk")
target.save_as_mesh(name)
bbox = self.field.domain.get_mesh_bounding_box()
x = nm.linspace(bbox[0, 0] + 0.001, bbox[1, 0] - 0.001, 20)
y = nm.linspace(bbox[0, 1] + 0.001, bbox[1, 1] - 0.001, 20)
xx, yy = nm.meshgrid(x, y)
test_coors = nm.c_[xx.ravel(), yy.ravel()].copy()
vec1 = source.evaluate_at(test_coors)
vec2 = target.evaluate_at(test_coors)
ok = (nm.abs(vec1 - vec2) < 0.01).all()
return ok