本文整理匯總了Python中sfepy.discrete.FieldVariable類的典型用法代碼示例。如果您正苦於以下問題:Python FieldVariable類的具體用法?Python FieldVariable怎麽用?Python FieldVariable使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了FieldVariable類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: nodal_stress
def nodal_stress(out, pb, state, extend=False, integrals=None):
'''
Calculate stresses at nodal points.
'''
# Point load.
mat = pb.get_materials()['Load']
P = 2.0 * mat.get_data('special', 'val')[1]
# Calculate nodal stress.
pb.time_update()
if integrals is None: integrals = pb.get_integrals()
stress = pb.evaluate('ev_cauchy_stress.ivn.Omega(Asphalt.D, u)', mode='qp',
integrals=integrals, copy_materials=False)
sfield = Field.from_args('stress', nm.float64, (3,),
pb.domain.regions['Omega'])
svar = FieldVariable('sigma', 'parameter', sfield,
primary_var_name='(set-to-None)')
svar.set_from_qp(stress, integrals['ivn'])
print('\n==================================================================')
print('Given load = %.2f N' % -P)
print('\nAnalytical solution')
print('===================')
print('Horizontal tensile stress = %.5e MPa/mm' % (-2.*P/(nm.pi*150.)))
print('Vertical compressive stress = %.5e MPa/mm' % (-6.*P/(nm.pi*150.)))
print('\nFEM solution')
print('============')
print('Horizontal tensile stress = %.5e MPa/mm' % (svar()[0]))
print('Vertical compressive stress = %.5e MPa/mm' % (-svar()[1]))
print('==================================================================')
return out
示例2: nodal_stress
def nodal_stress(out, pb, state, extend=False, integrals=None):
"""
Calculate stresses at nodal points.
"""
# Point load.
mat = pb.get_materials()["Load"]
P = 2.0 * mat.get_data("special", "val")[1]
# Calculate nodal stress.
pb.time_update()
if integrals is None:
integrals = pb.get_integrals()
stress = pb.evaluate("ev_cauchy_stress.ivn.Omega(Asphalt.D, u)", mode="qp", integrals=integrals)
sfield = Field.from_args("stress", nm.float64, (3,), pb.domain.regions["Omega"])
svar = FieldVariable("sigma", "parameter", sfield, primary_var_name="(set-to-None)")
svar.set_data_from_qp(stress, integrals["ivn"])
print "\n=================================================================="
print "Given load = %.2f N" % -P
print "\nAnalytical solution"
print "==================="
print "Horizontal tensile stress = %.5e MPa/mm" % (-2.0 * P / (nm.pi * 150.0))
print "Vertical compressive stress = %.5e MPa/mm" % (-6.0 * P / (nm.pi * 150.0))
print "\nFEM solution"
print "============"
print "Horizontal tensile stress = %.5e MPa/mm" % (svar()[0][0])
print "Vertical compressive stress = %.5e MPa/mm" % (-svar()[0][1])
print "=================================================================="
return out
示例3: test_volume_tl
def test_volume_tl(self):
from sfepy.discrete import FieldVariable
fu = self.problem.fields['vector']
fq = self.problem.fields['scalar']
var_u = FieldVariable('u', 'parameter', fu,
primary_var_name='(set-to-None)')
var_q = FieldVariable('q', 'test', fq,
primary_var_name='(set-to-None)')
var_u.set_data(nm.linspace(0, 0.004, var_u.n_dof))
vval = self.problem.evaluate('dw_tl_volume.i.Omega( q, u )',
term_mode='volume', q=var_q, u=var_u)
sval = self.problem.evaluate('d_tl_volume_surface.i.Gamma( u )',
u=var_u)
ok = abs(vval - sval) < 1e-14
self.report('TL: by volume: %e == by surface: %e -> %s' %
(vval, sval, ok))
return ok
示例4: test_surface_evaluate
def test_surface_evaluate(self):
from sfepy.discrete import FieldVariable
problem = self.problem
us = problem.get_variables()['us']
vec = nm.empty(us.n_dof, dtype=us.dtype)
vec[:] = 1.0
us.set_data(vec)
expr = 'ev_surface_integrate.i.Left( us )'
val = problem.evaluate(expr, us=us)
ok1 = nm.abs(val - 1.0) < 1e-15
self.report('with unknown: %s, value: %s, ok: %s'
% (expr, val, ok1))
ps1 = FieldVariable('ps1', 'parameter', us.get_field(),
primary_var_name='(set-to-None)')
ps1.set_data(vec)
expr = 'ev_surface_integrate.i.Left( ps1 )'
val = problem.evaluate(expr, ps1=ps1)
ok2 = nm.abs(val - 1.0) < 1e-15
self.report('with parameter: %s, value: %s, ok: %s'
% (expr, val, ok2))
ok2 = True
return ok1 and ok2
示例5: test_projection_iga_fem
def test_projection_iga_fem(self):
from sfepy.discrete import FieldVariable
from sfepy.discrete.fem import FEDomain, Field
from sfepy.discrete.iga.domain import IGDomain
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.discrete.iga.domain_generators import gen_patch_block_domain
from sfepy.discrete.projections import (make_l2_projection,
make_l2_projection_data)
shape = [10, 12, 12]
dims = [5, 6, 6]
centre = [0, 0, 0]
degrees = [2, 2, 2]
nurbs, bmesh, regions = gen_patch_block_domain(dims, shape, centre,
degrees,
cp_mode='greville',
name='iga')
ig_domain = IGDomain('iga', nurbs, bmesh, regions=regions)
ig_omega = ig_domain.create_region('Omega', 'all')
ig_field = Field.from_args('iga', nm.float64, 1, ig_omega,
approx_order='iga', poly_space_base='iga')
ig_u = FieldVariable('ig_u', 'parameter', ig_field,
primary_var_name='(set-to-None)')
mesh = gen_block_mesh(dims, shape, centre, name='fem')
fe_domain = FEDomain('fem', mesh)
fe_omega = fe_domain.create_region('Omega', 'all')
fe_field = Field.from_args('fem', nm.float64, 1, fe_omega,
approx_order=2)
fe_u = FieldVariable('fe_u', 'parameter', fe_field,
primary_var_name='(set-to-None)')
def _eval_data(ts, coors, mode, **kwargs):
return nm.prod(coors**2, axis=1)[:, None, None]
make_l2_projection_data(ig_u, _eval_data)
make_l2_projection(fe_u, ig_u) # This calls ig_u.evaluate_at().
coors = 0.5 * nm.random.rand(20, 3) * dims
ig_vals = ig_u.evaluate_at(coors)
fe_vals = fe_u.evaluate_at(coors)
ok = nm.allclose(ig_vals, fe_vals, rtol=0.0, atol=1e-12)
if not ok:
self.report('iga-fem projection failed!')
self.report('coors:')
self.report(coors)
self.report('iga fem diff:')
self.report(nm.c_[ig_vals, fe_vals, nm.abs(ig_vals - fe_vals)])
return ok
示例6: create_subequations
def create_subequations(self, var_names, known_var_names=None):
"""
Create sub-equations containing only terms with the given virtual
variables.
Parameters
----------
var_names : list
The list of names of virtual variables.
known_var_names : list
The list of names of (already) known state variables.
Returns
-------
subequations : Equations instance
The sub-equations.
"""
from sfepy.discrete import FieldVariable
known_var_names = get_default(known_var_names, [])
objs = []
for iv, var_name in enumerate(var_names):
terms = [term.copy(name=term.name)
for eq in self for term in eq.terms
if term.get_virtual_name() == var_name]
# Make parameter variables from known state variables in terms
# arguments.
for known_name in known_var_names:
for term in terms:
if known_name in term.arg_names:
ii = term.arg_names.index(known_name)
state = self.variables[known_name]
par = FieldVariable(known_name, 'parameter',
state.field,
primary_var_name='(set-to-None)')
term.args[ii] = par
term._kwargs[known_name] = par
par.set_data(state())
new_terms = Terms(terms)
objs.append(Equation('eq_%d' % iv, new_terms))
subequations = Equations(objs)
return subequations
示例7: test_variables
def test_variables(self):
from sfepy.discrete import FieldVariable
u = FieldVariable('u', 'parameter', self.field,
primary_var_name='(set-to-None)')
u.set_constant(1.0)
vec = u() # Nodal values.
ok = nm.allclose(vec, 1.0)
## print u()
## print u.get_vector() # Coefficient vector w.r.t. the field space basis.
## print u(gamma1)
## print u.get_vector(gamma2)
return ok
示例8: prepare_variable
def prepare_variable(filename, n_components):
from sfepy.discrete import FieldVariable
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(filename)
bbox = mesh.get_bounding_box()
dd = bbox[1, :] - bbox[0, :]
data = nm.sin(4.0 * nm.pi * mesh.coors[:, 0:1] / dd[0]) * nm.cos(4.0 * nm.pi * mesh.coors[:, 1:2] / dd[1])
domain = FEDomain("domain", mesh)
omega = domain.create_region("Omega", "all")
field = Field.from_args("field", nm.float64, n_components, omega, approx_order=2)
u = FieldVariable("u", "parameter", field, primary_var_name="(set-to-None)")
u.set_from_mesh_vertices(data * nm.arange(1, n_components + 1)[None, :])
return u
示例9: test_projection_tri_quad
def test_projection_tri_quad(self):
from sfepy.discrete.projections import make_l2_projection
source = FieldVariable('us', 'unknown', self.field)
coors = self.field.get_coor()
vals = nm.sin(2.0 * nm.pi * coors[:,0] * coors[:,1])
source.set_data(vals)
name = op.join(self.options.out_dir,
'test_projection_tri_quad_source.vtk')
source.save_as_mesh(name)
mesh = Mesh.from_file('meshes/2d/square_quad.mesh',
prefix_dir=sfepy.data_dir)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('bilinear', nm.float64, 'scalar', omega,
approx_order=1)
target = FieldVariable('ut', 'unknown', field)
make_l2_projection(target, source)
name = op.join(self.options.out_dir,
'test_projection_tri_quad_target.vtk')
target.save_as_mesh(name)
bbox = self.field.domain.get_mesh_bounding_box()
x = nm.linspace(bbox[0, 0] + 0.001, bbox[1, 0] - 0.001, 20)
y = nm.linspace(bbox[0, 1] + 0.001, bbox[1, 1] - 0.001, 20)
xx, yy = nm.meshgrid(x, y)
test_coors = nm.c_[xx.ravel(), yy.ravel()].copy()
vec1 = source.evaluate_at(test_coors)
vec2 = target.evaluate_at(test_coors)
ok = (nm.abs(vec1 - vec2) < 0.01).all()
return ok
示例10: test_variables
def test_variables(self):
from sfepy.discrete import FieldVariable, Integral
ok = True
u = FieldVariable('u', 'parameter', self.field,
primary_var_name='(set-to-None)')
u.set_constant(1.0)
vec = u() # Nodal values.
_ok = nm.allclose(vec, 1.0)
self.report('set constant:', _ok)
ok = _ok and ok
def fun(coors):
val = nm.empty_like(coors)
val[:, 0] = 2 * coors[:, 1] - coors[:, 0]
val[:, 1] = coors[:, 0] + 3 * coors[:, 1]
return val
u.set_from_function(fun)
coors = u.field.get_coor()
eu = u.evaluate_at(coors)
_ok = nm.allclose(eu, fun(coors), rtol=0.0, atol=1e-13)
self.report('set from function:', _ok)
ok = _ok and ok
integral = Integral('i', order=2)
gu_qp = u.evaluate(mode='grad', integral=integral)
# du_i/dx_j, i = column, j = row.
gu = nm.array([[-1., 1.],
[ 2., 3.]])
_ok = nm.allclose(gu_qp, gu[None, None, ...], rtol=0.0, atol=1e-13)
self.report('set from function - gradient:', _ok)
ok = _ok and ok
u_qp = gu_qp[..., :, :1]
u.set_from_qp(u_qp, integral)
vu = u()
_ok = (nm.allclose(vu[::2], -1, rtol=0.0, atol=1e-13) and
nm.allclose(vu[1::2], 2, rtol=0.0, atol=1e-13))
self.report('set from qp:', _ok)
ok = _ok and ok
return ok
示例11: prepare_variable
def prepare_variable(filename, n_components):
from sfepy.discrete import FieldVariable
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(filename)
bbox = mesh.get_bounding_box()
dd = bbox[1,:] - bbox[0,:]
data = (nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / dd[0])
* nm.cos(4.0 * nm.pi * mesh.coors[:,1:2] / dd[1]))
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('field', nm.float64, n_components, omega,
approx_order=2)
u = FieldVariable('u', 'parameter', field,
primary_var_name='(set-to-None)')
u.set_from_mesh_vertices(nm.c_[tuple([data] * n_components)])
return u
示例12: test_project_tensors
def test_project_tensors(self):
from sfepy.discrete import FieldVariable
from sfepy.discrete.projections import project_by_component
ok = True
u = FieldVariable('u', 'parameter', self.field,
primary_var_name='(set-to-None)')
u.set_constant(1.0)
component = FieldVariable('component', 'parameter', self.field,
primary_var_name='(set-to-None)')
nls_options = {'eps_a' : 1e-16, 'i_max' : 1}
u_qp = u.evaluate()
u2 = FieldVariable('u2', 'parameter', self.field,
primary_var_name='(set-to-None)')
project_by_component(u2, u_qp, component, self.field.approx_order,
nls_options=nls_options)
_ok = self.compare_vectors(u(), u2())
ok = ok and _ok
gu_qp = u.evaluate(mode='grad')
gfield = Field.from_args('gu', nm.float64, 2, self.field.region,
approx_order=self.field.approx_order)
gu = FieldVariable('gu', 'parameter', gfield,
primary_var_name='(set-to-None)')
project_by_component(gu, gu_qp, component, gfield.approx_order,
nls_options=nls_options)
_ok = self.compare_vectors(gu(), nm.zeros_like(gu()))
ok = ok and _ok
return ok
示例13: save_basis_on_mesh
def save_basis_on_mesh(mesh, options, output_dir, lin,
permutations=None, suffix=''):
if permutations is not None:
mesh = mesh.copy()
gel = GeometryElement(mesh.descs[0])
perms = gel.get_conn_permutations()[permutations]
conn = mesh.cmesh.get_cell_conn()
n_el, n_ep = conn.num, gel.n_vertex
offsets = nm.arange(n_el) * n_ep
conn.indices[:] = conn.indices.take((perms + offsets[:, None]).ravel())
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('f', nm.float64, shape=1, region=omega,
approx_order=options.max_order,
poly_space_base=options.basis)
var = FieldVariable('u', 'unknown', field)
if options.plot_dofs:
import sfepy.postprocess.plot_dofs as pd
import sfepy.postprocess.plot_cmesh as pc
ax = pc.plot_wireframe(None, mesh.cmesh)
ax = pd.plot_global_dofs(ax, field.get_coor(), field.econn)
ax = pd.plot_local_dofs(ax, field.get_coor(), field.econn)
if options.dofs is not None:
ax = pd.plot_nodes(ax, field.get_coor(), field.econn,
field.poly_space.nodes,
get_dofs(options.dofs, var.n_dof))
pd.plt.show()
output('dofs: %d' % var.n_dof)
vec = nm.empty(var.n_dof, dtype=var.dtype)
n_digit, _format = get_print_info(var.n_dof, fill='0')
name_template = os.path.join(output_dir,
'dof_%s%s.vtk' % (_format, suffix))
for ip in get_dofs(options.dofs, var.n_dof):
output('dof %d...' % ip)
vec.fill(0.0)
vec[ip] = 1.0
var.set_data(vec)
if options.derivative == 0:
out = var.create_output(vec, linearization=lin)
else:
out = create_expression_output('ev_grad.ie.Elements(u)',
'u', 'f', {'f' : field}, None,
Variables([var]),
mode='qp', verbose=False,
min_level=lin.min_level,
max_level=lin.max_level,
eps=lin.eps)
name = name_template % ip
ensure_path(name)
out['u'].mesh.write(name, out=out)
output('...done (%s)' % name)
示例14: make_term_args
def make_term_args(arg_shapes, arg_kinds, arg_types, ats_mode, domain,
material_value=None, poly_space_base=None):
from sfepy.base.base import basestr
from sfepy.discrete import FieldVariable, Material, Variables, Materials
from sfepy.discrete.fem import Field
from sfepy.solvers.ts import TimeStepper
from sfepy.mechanics.tensors import dim2sym
omega = domain.regions['Omega']
dim = domain.shape.dim
sym = dim2sym(dim)
def _parse_scalar_shape(sh):
if isinstance(sh, basestr):
if sh == 'D':
return dim
elif sh == 'D2':
return dim**2
elif sh == 'S':
return sym
elif sh == 'N': # General number ;)
return 1
else:
return int(sh)
else:
return sh
def _parse_tuple_shape(sh):
if isinstance(sh, basestr):
return [_parse_scalar_shape(ii.strip()) for ii in sh.split(',')]
else:
return (int(sh),)
args = {}
str_args = []
materials = []
variables = []
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind != 'ts':
if ats_mode is not None:
extended_ats = arg_types[ii] + ('/%s' % ats_mode)
else:
extended_ats = arg_types[ii]
try:
sh = arg_shapes[arg_types[ii]]
except KeyError:
sh = arg_shapes[extended_ats]
if arg_kind.endswith('variable'):
shape = _parse_scalar_shape(sh[0] if isinstance(sh, tuple) else sh)
field = Field.from_args('f%d' % ii, nm.float64, shape, omega,
approx_order=1,
poly_space_base=poly_space_base)
if arg_kind == 'virtual_variable':
if sh[1] is not None:
istate = arg_types.index(sh[1])
else:
# Only virtual variable in arguments.
istate = -1
# -> Make fake variable.
var = FieldVariable('u-1', 'unknown', field)
var.set_constant(0.0)
variables.append(var)
var = FieldVariable('v', 'test', field,
primary_var_name='u%d' % istate)
elif arg_kind == 'state_variable':
var = FieldVariable('u%d' % ii, 'unknown', field)
var.set_constant(0.0)
elif arg_kind == 'parameter_variable':
var = FieldVariable('p%d' % ii, 'parameter', field,
primary_var_name='(set-to-None)')
var.set_constant(0.0)
variables.append(var)
str_args.append(var.name)
args[var.name] = var
elif arg_kind.endswith('material'):
if sh is None: # Switched-off opt_material.
continue
prefix = ''
if isinstance(sh, basestr):
aux = sh.split(':')
if len(aux) == 2:
prefix, sh = aux
#.........這裏部分代碼省略.........
示例15: solve_problem
#.........這裏部分代碼省略.........
verbose=True)
output('...done in', time.clock() - tt)
output('creating solver...')
tt = time.clock()
conf = Struct(method='bcgsl', precond='jacobi', sub_precond=None,
i_max=10000, eps_a=1e-50, eps_r=1e-6, eps_d=1e4,
verbose=True)
status = {}
ls = PETScKrylovSolver(conf, comm=comm, mtx=pmtx, status=status)
field_ranges = {}
for ii, variable in enumerate(variables.iter_state(ordered=True)):
field_ranges[variable.name] = lfds[ii].petsc_dofs_range
ls.set_field_split(field_ranges, comm=comm)
ev = PETScParallelEvaluator(pb, pdofs, drange, True,
psol, comm, verbose=True)
nls_status = {}
conf = Struct(method='newtonls',
i_max=5, eps_a=0, eps_r=1e-5, eps_s=0.0,
verbose=True)
nls = PETScNonlinearSolver(conf, pmtx=pmtx, prhs=prhs, comm=comm,
fun=ev.eval_residual,
fun_grad=ev.eval_tangent_matrix,
lin_solver=ls, status=nls_status)
output('...done in', time.clock() - tt)
output('solving...')
tt = time.clock()
state = pb.create_state()
state.apply_ebc()
ev.psol_i[...] = state()
ev.gather(psol, ev.psol_i)
psol = nls(psol)
ev.scatter(ev.psol_i, psol)
sol0_i = ev.psol_i[...]
output('...done in', time.clock() - tt)
output('saving solution...')
tt = time.clock()
state.set_full(sol0_i)
out = state.create_output_dict()
filename = os.path.join(options.output_dir, 'sol_%02d.h5' % comm.rank)
pb.domain.mesh.write(filename, io='auto', out=out)
gather_to_zero = pl.create_gather_to_zero(psol)
psol_full = gather_to_zero(psol)
if comm.rank == 0:
sol = psol_full[...].copy()
u = FieldVariable('u', 'parameter', field1,
primary_var_name='(set-to-None)')
remap = gfds[0].id_map
ug = sol[remap]
p = FieldVariable('p', 'parameter', field2,
primary_var_name='(set-to-None)')
remap = gfds[1].id_map
pg = sol[remap]
if (((order_u == 1) and (order_p == 1))
or (options.linearization == 'strip')):
out = u.create_output(ug)
out.update(p.create_output(pg))
filename = os.path.join(options.output_dir, 'sol.h5')
mesh.write(filename, io='auto', out=out)
else:
out = u.create_output(ug, linearization=Struct(kind='adaptive',
min_level=0,
max_level=order_u,
eps=1e-3))
filename = os.path.join(options.output_dir, 'sol_u.h5')
out['u'].mesh.write(filename, io='auto', out=out)
out = p.create_output(pg, linearization=Struct(kind='adaptive',
min_level=0,
max_level=order_p,
eps=1e-3))
filename = os.path.join(options.output_dir, 'sol_p.h5')
out['p'].mesh.write(filename, io='auto', out=out)
output('...done in', time.clock() - tt)