當前位置: 首頁>>代碼示例>>Python>>正文


Python Log.plot_vlines方法代碼示例

本文整理匯總了Python中sfepy.base.log.Log.plot_vlines方法的典型用法代碼示例。如果您正苦於以下問題:Python Log.plot_vlines方法的具體用法?Python Log.plot_vlines怎麽用?Python Log.plot_vlines使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sfepy.base.log.Log的用法示例。


在下文中一共展示了Log.plot_vlines方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from sfepy.base.log import Log [as 別名]
# 或者: from sfepy.base.log.Log import plot_vlines [as 別名]
def main():
    cwd = os.path.split(os.path.join(os.getcwd(), __file__))[0]

    log = Log(
        (["sin(x)", "cos(x)"], ["exp(x)"]),
        yscales=["linear", "log"],
        xlabels=["angle", None],
        ylabels=[None, "a function"],
        log_filename=os.path.join(cwd, "live_plot.log"),
    )
    log2 = Log(
        [["x^3"]],
        yscales=["linear"],
        xlabels=["x"],
        ylabels=["a cubic function"],
        log_filename=os.path.join(cwd, "live_plot2.log"),
    )

    added = 0
    for x in nm.linspace(0, 4.0 * nm.pi, 200):
        output("x: ", x)

        if x < (2.0 * nm.pi):
            log(nm.sin(x), nm.cos(x), nm.exp(x), x=[x, None])

        else:
            if added:
                log(nm.sin(x), nm.cos(x), nm.exp(x), x ** 2, x=[x, None, x])
            else:
                log.plot_vlines(color="r", linewidth=2)
                log.add_group(["x^2"], "linear", "new x", "square", formats=["%+g"])
            added += 1

        if (added == 20) or (added == 50):
            log.plot_vlines([2], color="g", linewidth=2)

        log2(x * x * x, x=[x])

    print log
    print log2
    pause()

    log(finished=True)
    log2(finished=True)
開發者ID:rosendo100,項目名稱:sfepy,代碼行數:46,代碼來源:live_plot.py

示例2: main

# 需要導入模塊: from sfepy.base.log import Log [as 別名]
# 或者: from sfepy.base.log.Log import plot_vlines [as 別名]
def main():
    cwd = os.path.split(os.path.join(os.getcwd(), __file__))[0]

    log = Log((['sin(x) + i sin(x**2)', 'cos(x)'], ['exp(x)']),
              yscales=['linear', 'log'],
              xlabels=['angle', None], ylabels=[None, 'a function'],
              log_filename=os.path.join(cwd, 'live_plot.log'))
    log2 = Log([['x^3']],
               yscales=['linear'],
               xlabels=['x'], ylabels=['a cubic function'],
               aggregate=50, sleep=0.05,
               log_filename=os.path.join(cwd, 'live_plot2.log'),
               formats=[['{:.5e}']])

    added = 0
    for x in nm.linspace(0, 4.0 * nm.pi, 200):
        output('x: ', x)

        if x < (2.0 * nm.pi):
            log(nm.sin(x)+1j*nm.sin(x**2), nm.cos(x), nm.exp(x), x=[x, None])

        else:
            if added:
                log(nm.sin(x)+1j*nm.sin(x**2), nm.cos(x), nm.exp(x), x**2,
                    x=[x, None, x])
            else:
                log.plot_vlines(color='r', linewidth=2)
                log.add_group(['x^2'], yscale='linear', xlabel='new x',
                              ylabel='square', formats=['%+g'])
            added += 1

        if (added == 20) or (added == 50):
            log.plot_vlines([2], color='g', linewidth=2)

        log2(x*x*x, x=[x])

    print(log)
    print(log2)
    pause()

    log(finished=True)
    log2(finished=True)
開發者ID:rc,項目名稱:sfepy,代碼行數:44,代碼來源:live_plot.py

示例3: Newton

# 需要導入模塊: from sfepy.base.log import Log [as 別名]
# 或者: from sfepy.base.log.Log import plot_vlines [as 別名]

#.........這裏部分代碼省略.........
        iter_hook : function, optional
            User-supplied function to call before each iteration.
        status : dict-like, optional
            The user-supplied object to hold convergence statistics.

        Notes
        -----
        * The optional parameters except `iter_hook` and `status` need
          to be given either here or upon `Newton` construction.
        * Setting `conf.problem == 'linear'` means a pre-assembled and possibly
          pre-solved matrix. This is mostly useful for linear time-dependent
          problems.
        """
        import sfepy.base.plotutils as plu
        conf = get_default( conf, self.conf )
        fun = get_default( fun, self.fun )
        fun_grad = get_default( fun_grad, self.fun_grad )
        lin_solver = get_default( lin_solver, self.lin_solver )
        iter_hook = get_default(iter_hook, self.iter_hook)
        status = get_default( status, self.status )

        ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
        eps_a = get_default(ls_eps_a, 1.0)
        eps_r = get_default(ls_eps_r, 1.0)
        lin_red = conf.eps_a * conf.lin_red

        time_stats = {}

        vec_x = vec_x0.copy()
        vec_x_last = vec_x0.copy()
        vec_dx = None

        if self.log is not None:
            self.log.plot_vlines(color='r', linewidth=1.0)

        err = err0 = -1.0
        err_last = -1.0
        it = 0
        while 1:
            if iter_hook is not None:
                iter_hook(self, vec_x, it, err, err0)

            ls = 1.0
            vec_dx0 = vec_dx;
            while 1:
                tt = time.clock()

                try:
                    vec_r = fun( vec_x )

                except ValueError:
                    if (it == 0) or (ls < conf.ls_min):
                        output('giving up!')
                        raise

                    else:
                        ok = False

                else:
                    ok = True

                time_stats['rezidual'] = time.clock() - tt
                if ok:
                    try:
                        err = nla.norm( vec_r )
                    except:
開發者ID:mikegraham,項目名稱:sfepy,代碼行數:70,代碼來源:nls.py

示例4: Oseen

# 需要導入模塊: from sfepy.base.log import Log [as 別名]
# 或者: from sfepy.base.log.Log import plot_vlines [as 別名]

#.........這裏部分代碼省略.........
        Oseen solver is problem-specific - it requires a Problem instance.
        """
        import sfepy.base.plotutils as plu

        conf = get_default( conf, self.conf )
        fun = get_default( fun, self.fun )
        fun_grad = get_default( fun_grad, self.fun_grad )
        lin_solver = get_default( lin_solver, self.lin_solver )
        status = get_default( status, self.status )
        problem = get_default( problem, self.problem )

        if problem is None:
            msg = 'set solver option "needs_problem_instance" to True!'
            raise ValueError(msg)

        time_stats = {}

        stabil = problem.get_materials()[conf.stabil_mat]
        ns, ii = stabil.function.function.get_maps()

        variables = problem.get_variables()
        update_var = variables.set_data_from_state
        make_full_vec = variables.make_full_vec

        print 'problem size:'
        print '    velocity: %s' % ii['us']
        print '    pressure: %s' % ii['ps']

        vec_x = vec_x0.copy()
        vec_x_prev = vec_x0.copy()
        vec_dx = None

        if self.log is not None:
            self.log.plot_vlines(color='r', linewidth=1.0)

        err0 = -1.0
        it = 0
        while 1:
            vec_x_prev_f = make_full_vec( vec_x_prev )
            update_var( ns['b'], vec_x_prev_f, ns['u'] )

            vec_b = vec_x_prev_f[ii['u']]
            b_norm = nla.norm( vec_b, nm.inf )
            print '|b|_max: %.12e' % b_norm

            vec_x_f = make_full_vec( vec_x )
            vec_u = vec_x_f[ii['u']]
            u_norm = nla.norm( vec_u, nm.inf )
            print '|u|_max: %.2e' % u_norm

            stabil.function.set_extra_args(b_norm=b_norm)
            stabil.time_update(None, problem.equations, mode='force',
                               problem=problem)
            max_pars = stabil.reduce_on_datas( lambda a, b: max( a, b.max() ) )
            print 'stabilization parameters:'
            print '                   gamma: %.12e' % max_pars[ns['gamma']]
            print '            max( delta ): %.12e' % max_pars[ns['delta']]
            print '              max( tau ): %.12e' % max_pars[ns['tau']]

            if (not are_close( b_norm, 1.0 )) and conf.adimensionalize:
                adimensionalize = True
            else:
                adimensionalize = False

            tt = time.clock()
            try:
開發者ID:snilek,項目名稱:sfepy,代碼行數:70,代碼來源:oseen.py

示例5: Newton

# 需要導入模塊: from sfepy.base.log import Log [as 別名]
# 或者: from sfepy.base.log.Log import plot_vlines [as 別名]

#.........這裏部分代碼省略.........
            The linear solver for each nonlinear iteration.
        iter_hook : function, optional
            User-supplied function to call before each iteration.
        status : dict-like, optional
            The user-supplied object to hold convergence statistics.

        Notes
        -----
        * The optional parameters except `iter_hook` and `status` need
          to be given either here or upon `Newton` construction.
        * Setting `conf.is_linear == True` means a pre-assembled and possibly
          pre-solved matrix. This is mostly useful for linear time-dependent
          problems.
        """
        conf = get_default(conf, self.conf)
        fun = get_default(fun, self.fun)
        fun_grad = get_default(fun_grad, self.fun_grad)
        lin_solver = get_default(lin_solver, self.lin_solver)
        iter_hook = get_default(iter_hook, self.iter_hook)
        status = get_default(status, self.status)

        ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
        eps_a = get_default(ls_eps_a, 1.0)
        eps_r = get_default(ls_eps_r, 1.0)
        lin_red = conf.eps_a * conf.lin_red

        time_stats = {}

        vec_x = vec_x0.copy()
        vec_x_last = vec_x0.copy()
        vec_dx = None

        if self.log is not None:
            self.log.plot_vlines(color='r', linewidth=1.0)

        err = err0 = -1.0
        err_last = -1.0
        it = 0
        while 1:
            if iter_hook is not None:
                iter_hook(self, vec_x, it, err, err0)

            ls = 1.0
            vec_dx0 = vec_dx;
            while 1:
                tt = time.clock()

                try:
                    vec_r = fun(vec_x)

                except ValueError:
                    if (it == 0) or (ls < conf.ls_min):
                        output('giving up!')
                        raise

                    else:
                        ok = False

                else:
                    ok = True

                time_stats['rezidual'] = time.clock() - tt
                if ok:
                    try:
                        err = nla.norm(vec_r)
                    except:
開發者ID:cheon7886,項目名稱:sfepy,代碼行數:70,代碼來源:nls.py

示例6: FMinSteepestDescent

# 需要導入模塊: from sfepy.base.log import Log [as 別名]
# 或者: from sfepy.base.log.Log import plot_vlines [as 別名]

#.........這裏部分代碼省略.........
            ##
            # Backtrack (on errors).
            alpha = conf.ls0
            can_ls = True
            while 1:
                xit2 = xit - alpha * ofg
                aux = fn_of( xit2 )

                if self.log is not None:
                    self.log(of, ofg_norm, alpha, it)

                if aux is None:
                    alpha *= conf.ls_red_warp
                    can_ls = False
                    output( 'warp: reducing step (%f)' % alpha )
                elif conf.ls and conf.ls_method == 'backtracking':
                    if aux < of * conf.ls_on: break
                    alpha *= conf.ls_red
                    output( 'backtracking: reducing step (%f)' % alpha )
                else:
                    of_prev_prev = of_prev
                    of_prev = aux
                    break

                if alpha < conf.ls_min:
                    if aux is None:
                        raise RuntimeError, 'giving up...'
                    output( 'linesearch failed, continuing anyway' )
                    break

            # These values are modified by the line search, even if it fails
            of_prev_bak = of_prev
            of_prev_prev_bak = of_prev_prev

            if conf.ls and can_ls and conf.ls_method == 'full':
                output( 'full linesearch...' )
                alpha, fc, gc, of_prev, of_prev_prev, ofg1 = \
                       linesearch.line_search(fn_of,fn_ofg,xit,
                                              -ofg,ofg,of_prev,of_prev_prev,
                                              c2=0.4)
                if alpha is None:  # line search failed -- use different one.
                    alpha, fc, gc, of_prev, of_prev_prev, ofg1 = \
                           sopt.line_search(fn_of,fn_ofg,xit,
                                            -ofg,ofg,of_prev_bak,
                                            of_prev_prev_bak)
                    if alpha is None or alpha == 0:
                        # This line search also failed to find a better solution.
                        ret = 3
                        break
                output( ' -> alpha: %.8e' % alpha )
            else:
                if conf.ls_method == 'full':
                    output( 'full linesearch off (%s and %s)' % (conf.ls,
                                                                 can_ls) )
                ofg1 = None

            if self.log is not None:
                self.log.plot_vlines(color='g', linewidth=0.5)

            xit = xit - alpha * ofg
            if ofg1 is None:
                ofg = None
            else:
                ofg = ofg1.copy()

            for key, val in time_stats.iteritems():
                if len( val ):
                    output( '%10s: %7.2f [s]' % (key, val[-1]) )

            it = it + 1

        output( 'status:               %d' % ret )
        output( 'initial value:        %.8e' % of0 )
        output( 'current value:        %.8e' % of )
        output( 'iterations:           %d' % it )
        output( 'function evaluations: %d in %.2f [s]' \
              % (nc_of[0], nm.sum( time_stats['of'] ) ) )
        output( 'gradient evaluations: %d in %.2f [s]' \
              % (nc_ofg[0], nm.sum( time_stats['ofg'] ) ) )

        if self.log is not None:
            self.log(of, ofg_norm, alpha, it)

            if conf.log.plot is not None:
                self.log(save_figure=conf.log.plot,
                         finished=True)
            else:
                self.log(finished=True)
                
        if status is not None:
            status['log'] = self.log
            status['status'] = status
            status['of0'] = of0
            status['of'] = of
            status['it'] = it
            status['nc_of'] = nc_of[0]
            status['nc_ofg'] = nc_ofg[0]
            status['time_stats'] = time_stats

        return xit
開發者ID:olivierverdier,項目名稱:sfepy,代碼行數:104,代碼來源:optimize.py

示例7: Newton

# 需要導入模塊: from sfepy.base.log import Log [as 別名]
# 或者: from sfepy.base.log.Log import plot_vlines [as 別名]

#.........這裏部分代碼省略.........
        iter_hook : function, optional
            User-supplied function to call before each iteration.
        status : dict-like, optional
            The user-supplied object to hold convergence statistics.

        Notes
        -----
        * The optional parameters except `iter_hook` and `status` need
          to be given either here or upon `Newton` construction.
        * Setting `conf.problem == 'linear'` means 1 iteration and no
          rezidual check!
        """
        import sfepy.base.plotutils as plu

        conf = get_default(conf, self.conf)
        fun = get_default(fun, self.fun)
        fun_grad = get_default(fun_grad, self.fun_grad)
        lin_solver = get_default(lin_solver, self.lin_solver)
        iter_hook = get_default(iter_hook, self.iter_hook)
        status = get_default(status, self.status)

        ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
        eps_a = get_default(ls_eps_a, 1.0)
        eps_r = get_default(ls_eps_r, 1.0)
        lin_red = conf.eps_a * conf.lin_red

        time_stats = {}

        vec_x = vec_x0.copy()
        vec_x_last = vec_x0.copy()
        vec_dx = None

        if self.log is not None:
            self.log.plot_vlines(color="r", linewidth=1.0)

        err = err0 = -1.0
        err_last = -1.0
        it = 0
        while 1:
            if iter_hook is not None:
                iter_hook(self, vec_x, it, err, err0)

            ls = 1.0
            vec_dx0 = vec_dx
            while 1:
                tt = time.clock()

                try:
                    vec_r = fun(vec_x)

                except ValueError:
                    if (it == 0) or (ls < conf.ls_min):
                        output("giving up!")
                        raise

                    else:
                        ok = False

                else:
                    ok = True

                time_stats["rezidual"] = time.clock() - tt
                if ok:
                    try:
                        err = nla.norm(vec_r)
                    except:
開發者ID:taldcroft,項目名稱:sfepy,代碼行數:70,代碼來源:nls.py

示例8: Oseen

# 需要導入模塊: from sfepy.base.log import Log [as 別名]
# 或者: from sfepy.base.log.Log import plot_vlines [as 別名]
class Oseen(NonlinearSolver):
    """
    The Oseen solver for Navier-Stokes equations.
    """
    name = 'nls.oseen'

    __metaclass__ = SolverMeta

    _parameters = [
        ('stabil_mat', 'str', None, True,
         'The name of stabilization material.'),
        ('adimensionalize', 'bool', False, False,
         'If True, adimensionalize the problem (not implemented!).'),
        ('check_navier_stokes_rezidual', 'bool', False, False,
         'If True, check the Navier-Stokes rezidual after the nonlinear loop.'),
        ('i_max', 'int', 1, False,
         'The maximum number of iterations.'),
        ('eps_a', 'float', 1e-10, False,
         'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
        ('eps_r', 'float', 1.0, False,
         """The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
            ||f(x^0)||`."""),
        ('macheps', 'float', nm.finfo(nm.float64).eps, False,
         'The float considered to be machine "zero".'),
        ('lin_red', 'float', 1.0, False,
         """The linear system solution error should be smaller than (`eps_a` *
            `lin_red`), otherwise a warning is printed."""),
        ('lin_precision', 'float or None', None, False,
         """If not None, the linear system solution tolerances are set in each
            nonlinear iteration relative to the current residual norm by the
            `lin_precision` factor. Ignored for direct linear solvers."""),
    ]

    def __init__(self, conf, problem, **kwargs):
        NonlinearSolver.__init__(self, conf, **kwargs)

        conf = self.conf

        log = get_logging_conf(conf)
        conf.log = log = Struct(name='log_conf', **log)
        conf.is_any_log = (log.text is not None) or (log.plot is not None)

        conf.problem = problem

        conf = self.conf
        if conf.is_any_log:
            self.log = Log([[r'$||r||$'], ['iteration'],
                            [r'$\gamma$', r'$\max(\delta)$', r'$\max(\tau)$']],
                           xlabels=['', '', 'all iterations'],
                           ylabels=[r'$||r||$', 'iteration', 'stabilization'],
                           yscales=['log', 'linear', 'log'],
                           is_plot=conf.log.plot is not None,
                           log_filename=conf.log.text,
                           formats=[['%.8e'], ['%d'],
                                    ['%.8e', '%.8e', '%.8e']])

        else:
            self.log = None

    def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
                 lin_solver=None, status=None, problem=None):
        """
        Oseen solver is problem-specific - it requires a Problem instance.
        """
        conf = get_default(conf, self.conf)
        fun = get_default(fun, self.fun)
        fun_grad = get_default(fun_grad, self.fun_grad)
        lin_solver = get_default(lin_solver, self.lin_solver)
        status = get_default(status, self.status)
        problem = get_default(problem, conf.problem,
                              '`problem` parameter needs to be set!')

        time_stats = {}

        stabil = problem.get_materials()[conf.stabil_mat]
        ns, ii = stabil.function.function.get_maps()

        variables = problem.get_variables()
        update_var = variables.set_data_from_state
        make_full_vec = variables.make_full_vec

        output('problem size:')
        output('    velocity: %s' % ii['us'])
        output('    pressure: %s' % ii['ps'])

        vec_x = vec_x0.copy()
        vec_x_prev = vec_x0.copy()
        vec_dx = None

        if self.log is not None:
            self.log.plot_vlines(color='r', linewidth=1.0)

        err0 = -1.0
        it = 0
        while 1:
            vec_x_prev_f = make_full_vec(vec_x_prev)
            update_var(ns['b'], vec_x_prev_f, ns['u'])

            vec_b = vec_x_prev_f[ii['u']]
            b_norm = nla.norm(vec_b, nm.inf)
#.........這裏部分代碼省略.........
開發者ID:Nasrollah,項目名稱:sfepy,代碼行數:103,代碼來源:oseen.py

示例9: FMinSteepestDescent

# 需要導入模塊: from sfepy.base.log import Log [as 別名]
# 或者: from sfepy.base.log.Log import plot_vlines [as 別名]

#.........這裏部分代碼省略.........
            # Backtrack (on errors).
            alpha = conf.ls0
            can_ls = True
            while 1:
                xit2 = xit - alpha * ofg
                aux = fn_of(xit2)

                if self.log is not None:
                    self.log(of, ofg_norm, alpha, it)

                if aux is None:
                    alpha *= conf.ls_red_warp
                    can_ls = False
                    output('warp: reducing step (%f)' % alpha)
                elif conf.ls and conf.ls_method == 'backtracking':
                    if aux < of * conf.ls_on: break
                    alpha *= conf.ls_red
                    output('backtracking: reducing step (%f)' % alpha)
                else:
                    of_prev_prev = of_prev
                    of_prev = aux
                    break

                if alpha < conf.ls_min:
                    if aux is None:
                        raise RuntimeError, 'giving up...'
                    output('linesearch failed, continuing anyway')
                    break

            # These values are modified by the line search, even if it fails
            of_prev_bak = of_prev
            of_prev_prev_bak = of_prev_prev

            if conf.ls and can_ls and conf.ls_method == 'full':
                output('full linesearch...')
                alpha, fc, gc, of_prev, of_prev_prev, ofg1 = \
                    linesearch.line_search(fn_of,fn_ofg,xit,
                                           -ofg,ofg,of_prev,of_prev_prev,
                                           c2=0.4)
                if alpha is None:  # line search failed -- use different one.
                    alpha, fc, gc, of_prev, of_prev_prev, ofg1 = \
                        sopt.line_search(fn_of,fn_ofg,xit,
                                         -ofg,ofg,of_prev_bak,
                                         of_prev_prev_bak)
                    if alpha is None or alpha == 0:
                        # This line search also failed to find a better
                        # solution.
                        ret = 3
                        break
                output(' -> alpha: %.8e' % alpha)
            else:
                if conf.ls_method == 'full':
                    output('full linesearch off (%s and %s)'
                           % (conf.ls, can_ls))
                ofg1 = None

            if self.log is not None:
                self.log.plot_vlines(color='g', linewidth=0.5)

            xit = xit - alpha * ofg
            if ofg1 is None:
                ofg = None
            else:
                ofg = ofg1.copy()

            for key, val in time_stats.iteritems():
                if len(val):
                    output('%10s: %7.2f [s]' % (key, val[-1]))

            it = it + 1

        output('status:               %d' % ret)
        output('initial value:        %.8e' % of0)
        output('current value:        %.8e' % of)
        output('iterations:           %d' % it)
        output('function evaluations: %d in %.2f [s]'
               % (nc_of[0], nm.sum(time_stats['of'])))
        output('gradient evaluations: %d in %.2f [s]'
               % (nc_ofg[0], nm.sum(time_stats['ofg'])))

        if self.log is not None:
            self.log(of, ofg_norm, alpha, it)

            if conf.log.plot is not None:
                self.log(save_figure=conf.log.plot, finished=True)

            else:
                self.log(finished=True)

        if status is not None:
            status['log'] = self.log
            status['status'] = status
            status['of0'] = of0
            status['of'] = of
            status['it'] = it
            status['nc_of'] = nc_of[0]
            status['nc_ofg'] = nc_ofg[0]
            status['time_stats'] = time_stats

        return xit
開發者ID:Gkdnz,項目名稱:sfepy,代碼行數:104,代碼來源:optimize.py

示例10: Newton

# 需要導入模塊: from sfepy.base.log import Log [as 別名]
# 或者: from sfepy.base.log.Log import plot_vlines [as 別名]
class Newton( NonlinearSolver ):
    name = 'nls.newton'

    def process_conf( conf ):
        """
        Missing items are set to default values for a linear problem.
        
        Example configuration, all items::
        
            solver_1 = {
                'name' : 'newton',
                'kind' : 'nls.newton',

                'i_max'      : 2,
                'eps_a'      : 1e-8,
                'eps_r'      : 1e-2,
                'macheps'   : 1e-16,
                'lin_red'    : 1e-2, # Linear system error < (eps_a * lin_red).
                'ls_red'     : 0.1,
                'ls_red_warp' : 0.001,
                'ls_on'      : 0.99999,
                'ls_min'     : 1e-5,
                'check'     : 0,
                'delta'     : 1e-6,
                'is_plot'    : False,
                'log'        : None,
                 # 'nonlinear' or 'linear' (ignore i_max)
                'problem'   : 'nonlinear',
            }
        """
        get = conf.get_default_attr

        i_max = get( 'i_max', 1 )
        eps_a = get( 'eps_a', 1e-10 )
        eps_r = get( 'eps_r', 1.0 )
        macheps = get( 'macheps', nm.finfo( nm.float64 ).eps )
        lin_red = get( 'lin_red', 1.0 )
        ls_red = get( 'ls_red', 0.1 )
        ls_red_warp = get( 'ls_red_warp', 0.001 )
        ls_on = get( 'ls_on', 0.99999 )
        ls_min = get( 'ls_min', 1e-5 )
        check = get( 'check', 0 )
        delta = get( 'delta', 1e-6)
        is_plot = get( 'is_plot', False )
        problem = get( 'problem', 'nonlinear' )

        log = get_logging_conf(conf)
        log = Struct(name='log_conf', **log)
        is_any_log = (log.text is not None) or (log.plot is not None)

        common = NonlinearSolver.process_conf( conf )
        return Struct( **locals() ) + common
    process_conf = staticmethod( process_conf )

    def __init__(self, conf, **kwargs):
        NonlinearSolver.__init__( self, conf, **kwargs )

        conf = self.conf
        if conf.is_any_log:
            self.log = Log([[r'$||r||$'], ['iteration']],
                           xlabels=['', 'all iterations'],
                           ylabels=[r'$||r||$', 'iteration'],
                           yscales=['log', 'linear'],
                           is_plot=conf.log.plot is not None,
                           log_filename=conf.log.text,
                           formats=[['%.8e'], ['%d']])

        else:
            self.log = None

    ##
    # c: 02.12.2005, r: 04.04.2008
    # 10.10.2007, from newton()
    def __call__( self, vec_x0, conf = None, fun = None, fun_grad = None,
                  lin_solver = None, status = None ):
        """setting conf.problem == 'linear' means 1 iteration and no rezidual
        check!
        """
        import sfepy.base.plotutils as plu
        conf = get_default( conf, self.conf )
        fun = get_default( fun, self.fun )
        fun_grad = get_default( fun_grad, self.fun_grad )
        lin_solver = get_default( lin_solver, self.lin_solver )
        status = get_default( status, self.status )

        time_stats = {}

        vec_x = vec_x0.copy()
        vec_x_last = vec_x0.copy()
        vec_dx = None

        if self.log is not None:
            self.log.plot_vlines(color='r', linewidth=1.0)

        err0 = -1.0
        err_last = -1.0
        it = 0
        while 1:

            ls = 1.0
#.........這裏部分代碼省略.........
開發者ID:olivierverdier,項目名稱:sfepy,代碼行數:103,代碼來源:nls.py


注:本文中的sfepy.base.log.Log.plot_vlines方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。