本文整理匯總了Python中scipy.sparse.linalg.LinearOperator類的典型用法代碼示例。如果您正苦於以下問題:Python LinearOperator類的具體用法?Python LinearOperator怎麽用?Python LinearOperator使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了LinearOperator類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
def __init__(self, u, v):
assert (len(u) == len(v))
self.u, self.v = u, v
if LINOP_SUBCLASSING:
LinearOperator.__init__(self, dtype = float, shape = (len(u), len(v)))
else:
LinearOperator.__init__(self, dtype = float, shape = (len(u), len(v)), matvec = lambda x : type(self)._matvec(self, x))
示例2: makeOperator
def makeOperator( operatorInput, expectedShape ):
"""Internal. Takes a dense numpy array or a sparse matrix or
a function and makes an operator performing matrix * blockvector
products.
Examples
--------
>>> A = makeOperator( arrayA, (n, n) )
>>> vectorB = A( vectorX )
"""
if operatorInput is None:
def ident(x):
return x
operator = LinearOperator(expectedShape, ident, matmat=ident)
else:
operator = aslinearoperator(operatorInput)
if operator.shape != expectedShape:
raise ValueError('operator has invalid shape')
if sys.version_info[0] >= 3:
# special methods are looked up on the class -- so make a new one
operator.__class__ = CallableLinearOperator
else:
operator.__call__ = operator.matmat
return operator
示例3: makeOperator
def makeOperator( operatorInput, expectedShape ):
"""Internal. Takes a dense numpy array or a sparse matrix or
a function and makes an operator performing matrix * blockvector
products.
Example
-------
>>> A = makeOperator( arrayA, (n, n) )
>>> vectorB = A( vectorX )
"""
if operatorInput is None:
def ident(x):
return x
operator = LinearOperator(expectedShape, ident, matmat=ident)
else:
operator = aslinearoperator(operatorInput)
if operator.shape != expectedShape:
raise ValueError('operator has invalid shape')
operator.__call__ = operator.matmat
return operator
示例4: __init__
def __init__(self, F, Delta, u):
n = F.shape[0]
assert (F.shape[1] == n) and (u.shape == (n,))
self.F, self.Delta, self.u = F, Delta, u
self.u_prime = self.Delta - self.u
self.ones = np.ones(n, dtype=float)
LinearOperator.__init__(self, dtype=float, shape=self.F.shape)
示例5: __init__
def __init__(self,
A,
coarsening=pyamgcl_ext.coarsening.smoothed_aggregation,
relaxation=pyamgcl_ext.relaxation.spai0,
prm={}
):
"""
Class constructor.
Creates algebraic multigrid hierarchy.
Parameters
----------
A : the system matrix in scipy.sparse format
coarsening : {ruge_stuben, aggregation, *smoothed_aggregation*, smoothed_aggr_emin}
The coarsening type to use for construction of the multigrid
hierarchy.
relaxation : {damped_jacobi, gauss_seidel, chebyshev, *spai0*, ilu0}
The relaxation scheme to use for multigrid cycles.
prm : dictionary with amgcl parameters
"""
Acsr = A.tocsr()
self.P = pyamgcl_ext.make_preconditioner(
coarsening, relaxation, prm,
Acsr.indptr.astype(numpy.int32),
Acsr.indices.astype(numpy.int32),
Acsr.data.astype(numpy.float64)
)
LinearOperator.__init__(self, A.shape, self.P)
示例6: __init__
def __init__(self, shape, matvec):
self._shape = shape
self._action = matvec
LinearOperator.__init__(self,
shape=self._shape,
matvec=self.parallelDot,
dtype=np.complex128)
示例7: __init__
def __init__(self, K, quad, **kwargs):
assert len(K.shape) == 1
shape = (K.shape[0]-4, K.shape[0]-4)
N = shape[0]
LinearOperator.__init__(self, shape, None, **kwargs)
ck = ones(K.shape)
if quad == "GC": ck[N-1] = 2
self.dd = -4*pi*(K[:N]+1)/(K[:N]+3)*(K[:N]+2)**2
self.ud = [2*pi*(K[:N-2]+1)*(K[:N-2]+2)]
self.ld = [2*pi*(K[2:N]-1)*(K[2:N]+2)]
示例8: Operator
def Operator(f, size=None):
"""Create a stacked version of the function f, casted as a LinearOperator.
size is the dimension of the operator f."""
if size == None: size = f.Size
operator = LinearOperator((size,size), matvec = StackFunction(f), dtype=float64)
operator.__call__ = lambda x: operator * x
return operator
示例9: __init__
def __init__(self, mat, r=10, leaf_side=16):
LinearOperator.__init__(self, dtype=mat.dtype, shape=mat.shape,
matvec=self._matvec,
rmatvec=self._rmatvec)
self.mat = BlackBox(mat)
self.r = r
self.leaf_side = leaf_side
self.leaf_size = leaf_side**2
N = int(np.sqrt(self.mat.shape[0]))
self.pattern = distance_matrix(N, format='coo')
perm = hilbert_traverse(N)
conjugate_sparse(self.pattern, perm)
self.pattern = self.pattern.tocsr()
self.mat.permutate(perm)
self.root = hmat_node(self, tuple(zip((0, 0), self.mat.shape)))
return
示例10: _diagonal_operator
def _diagonal_operator(diag):
"""Creates an operator representing a
multiplication with a diagonal matrix"""
diag = diag.ravel()[:, np.newaxis]
def diag_matvec(vec):
if vec.ndim > 1:
return diag * vec
else:
return diag.ravel() * vec
linop = LinearOperator(shape=(len(diag), len(diag)),
matvec=diag_matvec,
rmatvec=diag_matvec,
dtype=np.float64)
linop.matvec = diag_matvec
linop.rmatvec = diag_matvec
return linop
示例11: get_grad_linop
def get_grad_linop(X, Y, invcovB, invcovN, alpha):
"""
Linear operator implementing the gradient of the functional
\frac{1}{2} \|Y - XB\|^2_{\Sigma_n} + \frac{1}{2} \|B\|^2_{\Sigma_s}
which reads
grad_B = X^T(XB - Y)\Sigma_n^{-1} + \lambda B\Sigma_s^{-1}
"""
N, P = X.shape
T = invcovB.shape[0]
if P <= N:
XTX = aslinearoperator(X.T.dot(X))
XTYinvcovN = invcovN.rmatvec(Y.T.dot(X)).T
def matvec(vecB):
XTXB = XTX.matvec(vecB.reshape(T, P).T)
XTXB_invcovN = invcovN.rmatvec(XTXB.T).T
B_incovB = invcovB.rmatvec(vecB.reshape(T, P)).T
result = XTXB_invcovN - XTYinvcovN + alpha * B_incovB
return result.T.ravel()
else:
# raise(Exception)
def matvec(vecB):
XB_minus_Y_invcovN = invcovN.rmatvec(
(X.dot(vecB.reshape(T, P).T) - Y).T).T
XT_XB_minus_Y_invcovN = X.T.dot(XB_minus_Y_invcovN)
B_incovB = invcovB.rmatvec(vecB.reshape(T, P)).T
result = XT_XB_minus_Y_invcovN + alpha * B_incovB
return result.T.ravel()
linop = LinearOperator(shape=tuple([X.shape[1] * Y.shape[1]] * 2),
matvec=matvec,
rmatvec=matvec,
dtype=np.dtype('float64'))
linop.matvec = matvec
linop.rmatvec = matvec
linop.dtype = np.dtype('float64')
return linop
示例12: _woodbury_inverse
def _woodbury_inverse(Ainv, Cinv, U, V):
"""Uses Woodbury Matrix Identity to invert the Matrix
(A + UCV) ^ (-1)
See http://en.wikipedia.org/wiki/Woodbury_matrix_identity"""
def matvec(x):
# this is probably wildly suboptimal, but it works
Ainv_x = Ainv.matvec(x)
Cinv_mat = Cinv.matvec(np.eye(Cinv.shape[0]))
VAinvU = V.dot(Ainv.matvec(U))
inv_Cinv_plus_VAinvU = np.linalg.inv(Cinv_mat + VAinvU)
VAinv_x = V.dot(Ainv_x)
inv_blabla_VAinv_x = inv_Cinv_plus_VAinvU.dot(VAinv_x)
whole_big_block = Ainv.matvec(
U.dot(inv_blabla_VAinv_x))
return Ainv_x - whole_big_block
shape = Ainv.shape
linop = LinearOperator(shape=shape, matvec=matvec)
linop.matvec = matvec
linop.rmatvec = matvec
return linop
示例13: __init__
def __init__(self, A, pmask, prm={}):
"""
Class constructor.
Parameters
----------
A : the system matrix in scipy.sparse format
prm : dictionary with amgcl parameters
"""
Acsr = A.tocsr()
self.P = pyamgcl_ext.make_simple(
prm,
Acsr.indptr.astype(numpy.int32),
Acsr.indices.astype(numpy.int32),
Acsr.data.astype(numpy.float64),
pmask.astype(numpy.int32)
)
if [int(v) for v in scipy.__version__.split('.')] < [0, 16, 0]:
LinearOperator.__init__(self, A.shape, self.P)
else:
LinearOperator.__init__(self, dtype=numpy.float64, shape=A.shape)
示例14: calculate_delta
def calculate_delta(gamma, #3-dim array (Nz,Nx,Ny) of complex shear
P_kd, #line-of-sight kappa-delta transform
P_gk, #gamma-kappa transform
S_dd, #expected signal covariance of delta
# (can be arbitrary form)
N, #shear noise
alpha, #weiner filter strength
M_factor = 1 #optional scaling of M before cg-method
):
"""
Implement equation A3 from Simon & Taylor 2009
Note: their notation Q -> our notation P_kd
Also, here we factor N_d^-1 out of M: M should be Hermitian for
the cg method. The Simon 09 expression is Hermitian only if N_d is
proportional to the identity, which will not be the case for
deweighted border pixels.
"""
P_kd = as_Lens3D_matrix(P_kd)
P_gk = as_Lens3D_matrix(P_gk)
S_dd = as_Lens3D_matrix(S_dd)
N = as_Lens3D_matrix(N)
P_gk_cross = P_gk.conj_transpose()
P_kd_T = P_kd.transpose()
print "calculating delta:"
print " shape of P_gk:",P_gk.shape
print " shape of P_kd:",P_kd.shape
print "constructing linear operator M"
#define an operator which performs matrix-vector
# multiplication representing M
def matvec(v):
v0 = P_gk_cross.view_as_Lens3D_vec(v)
v1 = N.matvec(v0)
v1 *= alpha
v2 = P_gk_cross.matvec( v0 )
v2 = P_kd_T.matvec( v2 )
v2 = S_dd.matvec( v2 )
v2 = P_kd.matvec( v2 )
v2 = P_gk.matvec( v2 )
ret = numpy.zeros(v.shape,dtype=complex)
ret += v1.vec
ret += v2.vec
return P_gk_cross.view_as_same_type( ret * M_factor , v )
M = LinearOperator(P_gk.shape,
matvec=matvec,
dtype=complex)
v = numpy.random.random(M.shape[1])
t0 = time()
v2 = M.matvec(v)
t = time()-t0
print " M multiplication: %.3g sec" % t
#print M.matvec(numpy.ones(M.shape[1]))[:10]
#exit()
print "constructing preconditioner for M"
#define an operator which can quickly approximate the inverse of
# M using fourier-space inversions. This inverse will be exact for
# a noiseless reconstruction on an infinite field
P_gk_I = P_gk.inverse(False)
#P_kd_I = P_kd.inverse()
S_dd_I = S_dd.inverse(False)
#P_kd_I_T = P_kd_I.transpose()
P_gk_I_cross = P_gk_I.conj_transpose()
def matvec_pc(v):
v0 = P_gk_I.view_as_Lens3D_vec(v)
v0 = P_gk_I.matvec(v0)
#v0 = P_kd_I.matvec(v0)
v0 = S_dd_I.matvec(v0)
#v0 = P_kd_I_T.matvec(v0)
v0 = P_gk_I_cross.matvec(v0)
return P_gk_I.view_as_same_type(v0,v)
M_pc = LinearOperator( (M.shape[1],M.shape[0]),
matvec = matvec_pc,
dtype = M.dtype )
v = numpy.random.random(M_pc.shape[1])
t0 = time()
v3 = M_pc.matvec(v)
t_pc = time()-t0
print " preconditioner multiplication: %.3g sec" % t_pc
step1_vec = gamma.vec
use_cg = True
#---define callback function---
#.........這裏部分代碼省略.........
示例15: estimate_condition_number
def estimate_condition_number(P_kd,
P_gk,
S_dd,
N,
alpha,
compute_exact = False):
P_kd = as_Lens3D_matrix(P_kd)
P_gk = as_Lens3D_matrix(P_gk)
S_dd = as_Lens3D_matrix(S_dd)
N = as_Lens3D_matrix(N)
P_gk_cross = P_gk.conj_transpose()
P_kd_T = P_kd.transpose()
def matvec(v):
v0 = P_gk_cross.view_as_Lens3D_vec(v)
v2 = P_gk_cross.matvec( v0 )
v2 = P_kd_T.matvec( v2 )
v2 = S_dd.matvec( v2 )
v2 = P_kd.matvec( v2 )
v2 = P_gk.matvec( v2 )
v1 = N.matvec(v0)
v1 *= alpha
ret = numpy.zeros(v.shape,dtype=complex)
ret += v1.vec
ret += v2.vec
return P_gk_cross.view_as_same_type( ret , v )
M = LinearOperator(P_gk.shape,
matvec=matvec,
dtype=complex)
#compute the exact condition number
if compute_exact:
v = numpy.random.random(M.shape[1])
t0 = time()
v2 = M.matvec(v)
t = time()-t0
print " - constructing matrix representation (est. %s)" \
% printtime(t*M.shape[0])
t0 = time()
M_rep = get_mat_rep(M)
print " time to get mat rep: %.2g sec" % (time()-t0)
print " - computing SVD"
t0 = time()
sig = numpy.linalg.svd(M_rep,compute_uv=False)
print " time for SVD: %.2g sec" % (time()-t0)
print 'true condition number: %.2e / %.2e = %.2e' \
% (sig[0],sig[-1],
sig[0]/sig[-1])
#estimate condition number, assuming the noiseless matrix
# is rank-deficient. This will be true if there are more
# source lens-planes than mass lens-planes
eval_max,evec_max = arpack.eigen(M,1)
print 'estimated condition number: %.2e / %.2e = %.2e' \
% ( abs(eval_max[0]) , numpy.min(N.data),
abs(eval_max[0]) / numpy.min(N.data) )