當前位置: 首頁>>代碼示例>>Python>>正文


Python FortranFile.read_reals方法代碼示例

本文整理匯總了Python中scipy.io.FortranFile.read_reals方法的典型用法代碼示例。如果您正苦於以下問題:Python FortranFile.read_reals方法的具體用法?Python FortranFile.read_reals怎麽用?Python FortranFile.read_reals使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.io.FortranFile的用法示例。


在下文中一共展示了FortranFile.read_reals方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: import_data_G

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
def import_data_G(name="G_0.01965", folder_name="./OUT/"):

    f = FortranFile(folder_name+name, 'r')

    version = f.read_reals(dtype='f4')
    time, Ra, Ra_c, P, Ha, Di, Pr, Le = f.read_reals(dtype='f4')
    nradius, ntheta, nphi, azsym = f.read_reals(dtype='f4') # be careful, all of them are reals
    radius = f.read_reals(dtype='f4')
    theta = f.read_reals(dtype='f4') #colatitude

    phi = np.arange(1, int(nphi)+1)/nphi*2.*np.pi/azsym #longitude (not read from file!)

    Vr = np.empty([nphi, ntheta, nradius])
    Vt = np.empty_like(Vr)
    Vp = np.empty_like(Vr)
    Temperature = np.empty_like(Vr)
    Composition = np.empty_like(Vr)

    for ir in np.arange(nradius):
        for it in np.arange(ntheta):
            Vr[:,it,ir]=f.read_reals(dtype='f4')
            Vt[:,it,ir]=f.read_reals(dtype='f4')
            Vp[:,it,ir]=f.read_reals(dtype='f4')
            Composition[:,it,ir]=f.read_reals(dtype='f4')
            Temperature[:,it,ir]=f.read_reals(dtype='f4')
    
    return time, Ra, Ra_c, P, Ha, Di, Pr, Le, nradius, ntheta, nphi, azsym, radius, theta, phi, Vr, Vt, Vp, Temperature, Composition
開發者ID:MarineLasbleis,項目名稱:IC_visualisation,代碼行數:29,代碼來源:IC_read_data.py

示例2: readfun

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
        def readfun(filename):
            '''
            reads unformatted fortran files 
            ''' 
            f = FortranFile('Outputs/'+filename, 'r')
            names = ''.join(f.read_reals('c'))
            data = []
            while True:
                    try:
                        data.append(f.read_reals(dtype=np.float_))
                    except TypeError:
                        break
                #array = np.reshape(array, (nspecs,-1))

            f.close()
            return [names.replace(' ',''),np.array(data)]
開發者ID:wolfiex,項目名稱:DSMACC-testing,代碼行數:18,代碼來源:zserialout.py

示例3: read_association

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
def read_association(listfile):
    assocFile = FortranFile(listfile, 'r')
    nassoc, columns = assocFile.read_ints()
    _tmp = (assocFile.read_reals(dtype=np.float32)).reshape((columns, nassoc)).transpose()
    assoc = pd.DataFrame(_tmp,
                         columns=['halo_id', 'level', 'halo_mass', 'gal_id', 'gal_mass'])

    assoc[['halo_id', 'level', 'gal_id']] =  assoc[['halo_id', 'level', 'gal_id']].astype(np.int32)
    return assoc
開發者ID:cphyc,項目名稱:cosmo_z17to0,代碼行數:11,代碼來源:sort_galaxy.py

示例4: read_halo_list

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
def read_halo_list(listfile):
    haloFile = FortranFile(listfile, 'r')
    nhalos, columns = haloFile.read_ints()
    _tmp = (haloFile.read_reals(dtype=np.float32)).reshape((columns, nhalos)).transpose()
    halos = pd.DataFrame(_tmp,
                         columns=['id', 'level', 'mass', 'x', 'y', 'z', 'rvir'])
    halos[['id', 'level']] = halos[['id', 'level']].astype(int)

    return halos
開發者ID:cphyc,項目名稱:cosmo_z17to0,代碼行數:11,代碼來源:sort_galaxy.py

示例5: read_output

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
def read_output(path, header_only=True):
    f = FortranFile(path, 'r')
    ncpu = f.read_ints()
    dim = f.read_ints()
    nparts = f.read_ints()
    if header_only:
        f.close()
        return ncpu, dim, nparts
    f.read_ints()
    f.read_ints()
    f.read_ints()
    f.read_ints()
    f.read_ints()

    x = f.read_reals(dtype=np.float64)
    y = f.read_reals(dtype=np.float64)
    z = f.read_reals(dtype=np.float64)

    vx = f.read_reals(dtype=np.float64)
    vy = f.read_reals(dtype=np.float64)
    vz = f.read_reals(dtype=np.float64)

    m = f.read_reals(dtype=np.float64)

    part_ids = f.read_ints()

    birth = f.read_reals(dtype=np.float32)

    f.close()
    return ncpu, dim, nparts, x, y, z, part_ids
開發者ID:cphyc,項目名稱:cosmo_z17to0,代碼行數:32,代碼來源:sort_galaxy.py

示例6: read_fortran_FFTfield

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
 def read_fortran_FFTfield(self):
       """
       Read a fortran binary file from FFTW assert all Nyquist
       entries to be real.
       """
       f=FortranFile(self.infile,'r')
       Ng=f.read_ints(dtype=np.int32)[0]
       print('Fortran file Ngrid='+str(Ng))
       if (Ng != self.Ngrid):
             print('Ngrid values are not equal!')
       dcr=f.read_reals(dtype=np.complex64)
       dcr=np.reshape(dcr,(Ng//2+1,Ng,Ng),order='F')
       return dcr
開發者ID:rspeare,項目名稱:window-function-convolution,代碼行數:15,代碼來源:Estimator.py

示例7: read_fortran_FFTfield

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
def read_fortran_FFTfield(infile):
    """
    Read a Half-Field with FFTW indexing from
    a Fortran Unformatted Binary file. The first
    entry is a single integer.
    """
    f=FortranFile(infile,'r')
    Ngrid=f.read_ints(dtype=np.int32)[0]
    print('Fortran file Ngrid='+str(Ngrid))
    dcr=f.read_reals(dtype=np.complex64)
    dcr=np.reshape(dcr,(Ngrid//2+1,Ngrid,Ngrid),order='F')
    dcr.dump(infile+'.pickle') # Save infile as a pickle
    return dcr
開發者ID:rspeare,項目名稱:window-function-convolution,代碼行數:15,代碼來源:util.py

示例8: read_fbin

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
def read_fbin(filename):
    ''' this reads each written binary instance itteratively'''
    f = FortranFile(filename, 'r')
    array = []
    while True:
        try:
            array.append(f.read_reals(dtype=np.float_))
        except TypeError:
            break
    #array = np.reshape(array, (nspecs,-1))

    f.close()
    return array
開發者ID:wolfiex,項目名稱:DSMACC-testing,代碼行數:15,代碼來源:begin.py

示例9: read_galaxy_list

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
def read_galaxy_list(listfile):
    galFile = FortranFile(listfile, 'r')
    print(listfile)
    ngal, columns = galFile.read_ints()
    _tmp = (galFile.read_reals(dtype=np.float32)).reshape((columns, ngal)).transpose()
    galaxies = pd.DataFrame(_tmp,
                            columns=['id', 'vt', 'dvz', 'dvr', 'dvtheta', 'mass', 'x', 'y', 'z'])
    galaxies.id.astype(int)

    galaxies['sigma'] = 1/3.*np.sqrt(galaxies.dvz**2 + galaxies.dvtheta**2 + galaxies.dvr**2)
    galaxies['sigmaoverv'] = galaxies.sigma / galaxies.vt
    galaxies['elliptic'] = galaxies.sigmaoverv > 1.5
    galaxies['spiral'] = galaxies.sigmaoverv < 0.8

    return galaxies
開發者ID:cphyc,項目名稱:cosmo_z17to0,代碼行數:17,代碼來源:sort_galaxy.py

示例10: read_fbin

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
def read_fbin(filename):
    ''' this reads each written binary instance itteratively'''
    f = FortranFile(filename, 'r')
    array = []
    while True:
        try:
            array.append(f.read_reals(dtype=np.float_))
        except TypeError:
            break
    #array = np.reshape(array, (nspecs,-1))

    f.close()
    
    
    #newdata = np.array(array)[:,selected_index]
    
    #indices = xrange(0,len(array)-sets_of,sets_of)
    
    
    #newdata = newdata[indices,:]
    #return newdata
    return array
開發者ID:wolfiex,項目名稱:DSMACC-testing,代碼行數:24,代碼來源:learn.py

示例11: read_atomic_data

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
def read_atomic_data(elements=['H', 'He', 'C',     # twelve most abundant elements
                               'N', 'O', 'Ne',
                               'Mg', 'Si', 'S', 
                               'Ar', 'Ca', 'Fe', ] , 
                     data_directory= 'sunnei/AtomicData',   # not robust!  Works when calling from the directory that sunnei is in
                     screen_output=False):

    '''
    This routine reads in the atomic data to be used for the
    non-equilibrium ionization calculations.
 
    Instructions for generating atomic data files
    =============================================
    
    The atomic data files are generated from the routines described by
    Shen et al. (2015) and are available at:
    
    https://github.com/ionizationcalc/time_dependent_fortran
    
    First, run the IDL routine 'pro_write_ionizrecomb_rate.pro' in the
    subdirectory sswidl_read_chianti with optional parameters: nte
    (number of temperature bins, default=501), te_low (low log
    temperature, default=4.0), and te_high (high log temperature,
    default=9.0) to get an ionization rate table.  The routine outputs
    the file "ionrecomb_rate.dat" which is a text file containing the
    ionization and recombination rates as a function of temperature.
    This routine requires the atomic database Chianti to be installed
    in IDL.

    Second, compile the Fortran routine 'create_eigenvmatrix.f90'.
    With the Intel mkl libraries it is compiled as: "ifort -mkl
    create_eigenvmatrix.f90 -o create.out" which can then be run with
    the command "./create.out".  This routine outputs all the
    eigenvalue tables for the first 28 elements (H to Ni).

    As of 2016 April 7, data from Chianti 8 is included in the
    CMEheat/AtomicData subdirectory.
    '''

    if screen_output:
        print('read_atomic_data: beginning program')
    
    from scipy.io import FortranFile

    '''
    Begin a loop to read in the atomic data files needed for the
    non-equilibrium ionization modeling.  The information will be
    stored in the atomic_data dictionary.

    For the first element in the loop, the information that should be
    the same for each element will be stored at the top level of the
    dictionary.  This includes the temperature grid, the number of
    temperatures, and the number of elements.

    For all elements, read in and store the arrays containing the
    equilibrium state, the eigenvalues, the eigenvectors, and the
    eigenvector inverses.
    '''

    atomic_data = {}
    
    first_element_in_loop = True

    for element in elements:

        if screen_output:
            print('read_atomic_data: '+element)

        AtomicNumber = AtomicNumbers[element]
        nstates = AtomicNumber + 1

        filename = data_directory + '/' + element.lower() + 'eigen.dat'
        H = FortranFile(filename, 'r')

        nte, nelems = H.read_ints(np.int32)
        temperatures = H.read_reals(np.float64)
        equistate = H.read_reals(np.float64).reshape((nte,nstates))
        eigenvalues = H.read_reals(np.float64).reshape((nte,nstates))
        eigenvector = H.read_reals(np.float64).reshape((nte,nstates,nstates))
        eigenvector_inv = H.read_reals(np.float64).reshape((nte,nstates,nstates))
        c_rate = H.read_reals(np.float64).reshape((nte,nstates))
        r_rate = H.read_reals(np.float64).reshape((nte,nstates))      
        
        if first_element_in_loop:
            atomic_data['nte'] = nte
            atomic_data['nelems'] = nelems  # Probably not used but store anyway
            atomic_data['temperatures'] = temperatures
            first_element_in_loop = False
        else: 
            assert nte == atomic_data['nte'], 'Atomic data files have different number of temperature levels: '+element
            assert nelems == atomic_data['nelems'], 'Atomic data files have different number of elements: '+element
            assert np.allclose(atomic_data['temperatures'],temperatures), 'Atomic data files have different temperature bins'

        atomic_data[element] = {'element':element,
                                'AtomicNumber':AtomicNumber,
                                'nstates':nstates,
                                'equistate':equistate,
                                'eigenvalues':eigenvalues,
                                'eigenvector':eigenvector,
                                'eigenvector_inv':eigenvector_inv,
#.........這裏部分代碼省略.........
開發者ID:namurphy,項目名稱:SunNEI,代碼行數:103,代碼來源:data_management.py

示例12: tmp

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
    def tmp():
        ff = FortranFile(filename)
        h = {}
        h["nbodies"] = ff.read_ints()
        h["massp"] = ff.read_ints()
        h["aexp"] = ff.read_reals(dtype=np.int32)
        h["omega_t"] = ff.read_reals(dtype=np.int32)
        h["age_univ"] = ff.read_reals(dtype=np.int32)
        h["n_halos"], h["n_subhalos"] = ff.read_ints()

        for i in tqdm(range(h["n_halos"] + h["n_subhalos"])):
            infos = {
                "header": h
            }
            infos["nparts"] = ff.read_ints()
            infos["members"] = ff.read_ints()
            infos["idh"] = ff.read_ints()
            infos["timestep"] = ff.read_ints()
            infos["hlevel"], infos["hosthalo"], infos["hostsub"], infos["nbsub"], infos["nextsub"] = ff.read_ints()

            infos["mhalo"] = ff.read_reals(dtype=np.int32)
            infos["pos"] = ff.read_reals(dtype=np.int32)
            infos["speed"] = ff.read_reals(dtype=np.int32)
            infos["L"] = ff.read_reals(dtype=np.int32)
            infos["r"], infos["a"], infos["b"], infos["c"] = ff.read_reals(dtype=np.int32)
            infos["ek"], infos["ep"], infos["et"] = ff.read_reals(dtype=np.int32)
            infos["spin"] = ff.read_reals(dtype=np.int32)
            if not dm_type:
                ff.read_reals()
            infos["rvir"],infos["mvir"], infos["tvir"], infos["cvel"] = ff.read_reals(dtype=np.int32)
            ff.read_reals()
            if not dm_type:
                infos["npoints"] = ff.read_ints()
                infos["rdum"] = ff.read_reals(dtype=np.int32)
                infos["density"] = ff.read_reals(dtype=np.int32)

            if low_mem != None:
                try:
                    keys = list(low_mem)
                except:
                    keys = ['nparts', 'members']

                tmp = {}
                for key in keys:
                    try:
                        tmp[key] = infos[key]
                    except KeyError:
                        print('Invalid key {}, can be any of', infos['keys'])
                yield tmp
            else:
                yield infos
        ff.close()
開發者ID:cphyc,項目名稱:cosmo_z17to0,代碼行數:54,代碼來源:tools.py

示例13: particles_in_halo

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
def particles_in_halo(tree_brick, start=0, end=None, fun_filter=lambda x: True):
    ''' Open a tree bricks file and associate to each halo the corresponding particles.
    '''
    # Open file
    f = FortranFile(tree_brick, 'r')

    # Give a value to end, by default start + 1
    if end == None:
        end = start + 1

    # Read headers
    nbodies = f.read_ints()[0]
    f.read_reals(dtype=np.float32)
    aexp = f.read_reals(dtype=np.float32)
    f.read_reals(dtype=np.float32)
    age = f.read_reals(dtype=np.float32)
    nhalo, nsubhalo = f.read_ints()
    halo_tot = nhalo + nsubhalo

    halos = {}
    for i in tqdm(range(halo_tot)):
        parts = f.read_ints()[0]
        members = f.read_ints()
        this_id = f.read_ints()[0]
        if (start <= this_id and this_id < end and fun_filter(this_id)):
            for dm_particle_id in members:
                if not halos.has_key(this_id):
                    halos[this_id] = []

                halos[this_id].append(dm_particle_id)
        elif this_id >= end:
            break
        f.read_ints()

        # Irrelevant
        level, hosthalo, hostsub, nbsub, nextsub = f.read_ints()
        mstar = 1e11 * f.read_reals(dtype=np.float32)
        px, py, pz = f.read_reals(dtype=np.float32)
        f.read_reals(dtype=np.float32)
        f.read_reals(dtype=np.float32)
        rad = f.read_reals(dtype=np.float32)[0]
        f.read_reals(dtype=np.float32)
        f.read_reals(dtype=np.float32)
        rvir, mvir, tvir, cvel = f.read_reals(dtype=np.float32)
        f.read_reals(dtype=np.float32)

    f.close()
    return halos
開發者ID:cphyc,項目名稱:cosmo_z17to0,代碼行數:50,代碼來源:sort_galaxy.py

示例14: range

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
import numpy as np
from scipy.io import FortranFile
from PyFuncemeClimateTools import CreateNetCDF as cn
from decimal import *

lons = [ -55.637 + (0.54 * i) for i in range(109)]
lons = [ float(Decimal("%.2f" % elem)) for elem in lons]

lats = [-21.397, -20.893, -20.387, -19.880, -19.371, -18.861, -18.349, -17.835, -17.320, -16.803,
-16.285, -15.766, -15.246, -14.724, -14.200, -13.676, -13.150, -12.624, -12.096, -11.567,
-11.037, -10.506,  -9.975,  -9.442,  -8.909,  -8.375,  -7.840,  -7.304,  -6.768,  -6.231,
  -5.694,  -5.156,  -4.617,  -4.079,  -3.539,  -3.000,  -2.460,  -1.920,  -1.380,  -0.840,
  -0.300,  0.241,   0.781,   1.321,   1.861,   2.401,   2.941,   3.480,   4.019,   4.558,
   5.097, 5.635,   6.172,   6.709,   7.245,   7.781,   8.316,   8.850,   9.384,   9.916,
  10.448,  10.979,  11.509,  12.038,  12.566,  13.093,  13.618,  14.143,  14.666,  15.188,
  15.709,  16.229]

f = FortranFile('./plev.198811.DAILY.PER11.51', 'r')

myvar = np.full((30, 72, 109), np.nan)

for i in range(30):
    var = (f.read_reals(dtype='float32')).reshape(72, 109)
    myvar[i, ...] = var
    dummy = (f.read_reals(dtype='float32'))

cn.create_netcdf(myvar, lats, lons, ntime=30)

#
開發者ID:marcelorodriguesss,項目名稱:FCST,代碼行數:31,代碼來源:read-fortran.py

示例15: file

# 需要導入模塊: from scipy.io import FortranFile [as 別名]
# 或者: from scipy.io.FortranFile import read_reals [as 別名]
parser.add_argument('--infofile', type=str, help='Path to the information file (the one containing units of RAMSES, …)')

args = parser.parse_args()

# read the info file
infos = dict()
infos['headers'] = pd.read_csv(args.infofile, sep=' *= *', nrows=19, names=['key', 'value'], index_col='key').T
infos['domain'] = pd.read_csv(args.infofile, delim_whitespace=True, skiprows=20)


# read the center
from scipy.io import FortranFile
ff = FortranFile('data/halo_536-centers.bin')
ff.read_ints() # don't care
outputs = ff.read_ints()
centers = ff.read_reals().reshape(len(outputs), 3)
mins    = ff.read_reals().reshape(len(outputs), 3)
span    = ff.read_reals().reshape(len(outputs), 3)
maxs    = ff.read_reals().reshape(len(outputs), 3)

# create the output dir if required
# if not os.path.isdir(args.out):
#     os.mkdir(args.out)


HDF = pd.HDFStore(args.infile)
# read the data
df    = HDF['extremas']
dens  = HDF['dens']
edges = HDF['edges']
開發者ID:cphyc,項目名稱:cosmo_z17to0,代碼行數:32,代碼來源:treat_extrema.py


注:本文中的scipy.io.FortranFile.read_reals方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。