本文整理匯總了Python中scipy.interpolate.BarycentricInterpolator類的典型用法代碼示例。如果您正苦於以下問題:Python BarycentricInterpolator類的具體用法?Python BarycentricInterpolator怎麽用?Python BarycentricInterpolator使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了BarycentricInterpolator類的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: generalized_gauss
def generalized_gauss(collocation_points, verbose=False):
p, result1, result2 = args.degree, [], []
interp = BarycentricInterpolator(collocation_points)
for n in range(p//2):
filename = 'weights{}.txt'.format(n+1)
with open(filename) as f:
header = f.readline()
x = float(header.split()[-1])
# check if quadrature is for the given collacation point
assert math.isclose(x, collocation_points[n], rel_tol=fixed.exact_tol)
y, w = np.loadtxt(filename, unpack=True)
check_generalized(lambda f: np.sum(w*f(y)), x, verbose)
I, b1, b2 = np.eye(collocation_points.size), [], []
for i in range(collocation_points.size):
interp.set_yi(I[i])
b1.append(interp(y))
b2.append(interp(1-y[::-1]))
result1.append(( y, w, np.array(b1) ))
result2.append(( 1-y[::-1], w[::-1], np.array(b2) ))
return result1 + result2[::-1]
示例2: test_append
def test_append(self):
P = BarycentricInterpolator(self.xs[:3],self.ys[:3])
P.add_xi(self.xs[3:],self.ys[3:])
assert_almost_equal(self.true_poly(self.test_xs),P(self.test_xs))
示例3: test_delayed
def test_delayed(self):
P = BarycentricInterpolator(self.xs)
P.set_yi(self.ys)
assert_almost_equal(self.true_poly(self.test_xs),P(self.test_xs))
示例4: f
npts = 7
noiseAmp = 0.03
xdata = np.linspace(0.2, 10., npts) + 0.3*np.random.randn(npts)
xdata = np.sort(xdata)
ydata = f(xdata) * (1.0 + noiseAmp * np.random.randn(npts))
np.savetxt('logCurveData9.txt', zip(xdata, ydata), fmt='%10.2f')
# Create x array spanning data set plus 5%
xmin, xmax = frangeAdd(xdata, 0.05)
x = np.linspace(xmin, xmax, 200)
# Plot data and "fit"
plt.plot(xdata, ydata, 'or', label='data')
plt.plot(x, f(x), 'k-', label='fitting function')
# Create y array from cubic spline
f_cubic = interp1d(xdata, ydata, kind='cubic', bounds_error=False)
plt.plot(x, f_cubic(x), 'k-', label='cubic spline')
# Create y array from univariate spline
f_univar = UnivariateSpline(xdata, ydata, w=None, bbox=[xmin, xmax], k=3)
plt.plot(x, f_univar(x), label='univariate spline')
# Create y array from barycentric interpolation
f_bary = BarycentricInterpolator(xdata, ydata)
plt.plot(x, f_bary.__call__(x), label='barycentric interp')
plt.legend(loc='best')
plt.show()
示例5: interpolator
def interpolator(self, x, values):
"""
Returns a polynomial with vector coefficients which interpolates the values at the Chebyshev points x
"""
# hacking the barycentric interpolator by computing the weights in advance
p = Bary([0.])
N = len(values)
weights = np.ones(N)
weights[0] = .5
weights[1::2] = -1
weights[-1] *= .5
p.wi = weights
p.xi = x
p.set_yi(values)
return p
示例6: BI
t0_a= 10.8
sigma_t_a= 0.2
sigma= 0.04
active_space_a= np.array(map(lambda x: 1./(1+np.exp((x-L)/sigma)),x))*1./(1+np.exp(t0_a/sigma_t_a))
active_const_a= np.array(map(lambda x: 1.,x))*1./(1+np.exp(t0_a/sigma_t_a))
t0_i= 12.2
sigma_t_i= .8
sigma= 0.04
active_space_i= np.array(map(lambda x: 1./(1+np.exp((x-L)/sigma)),x))*1./(1+np.exp(t0_i/sigma_t_i))
active_const_i= np.array(map(lambda x: 1.,x))*1./(1+np.exp(t0_i/sigma_t_i))
rng= np.linspace(-1,1,1000)
x_step= 2./1000
interpolator= BI(x)
avg_h_blade= []
avg_Q_minus_blade= []
avg_T_minus_blade= []
avg_shear_blade= []
zeta= zeta_h*active_space_a + zeta_b*active_const_a
zetabar= zetabar_h*active_space_i + zetabar_b*active_const_i
lambda2= lambda2_h*active_space_a + lambda2_b*active_const_a
#xi = xi_h*active_space_a + xi_b*active_const_a
n_images= 150
image_step= 200
for i in np.arange(n_images*image_step):
if i%image_step == 0: