當前位置: 首頁>>代碼示例>>Python>>正文


Python ProfileUtils.ProfileUtils類代碼示例

本文整理匯總了Python中sandbox.util.ProfileUtils.ProfileUtils的典型用法代碼示例。如果您正苦於以下問題:Python ProfileUtils類的具體用法?Python ProfileUtils怎麽用?Python ProfileUtils使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了ProfileUtils類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: profileObjective

    def profileObjective(self):

        k = 10
        U = numpy.random.rand(self.m, k)
        V = numpy.random.rand(self.n, k)

        indPtr, colInds = SparseUtils.getOmegaListPtr(self.X)
        colIndsProbabilities = numpy.ones(colInds.shape[0])

        for i in range(self.m):
            colIndsProbabilities[indPtr[i] : indPtr[i + 1]] /= colIndsProbabilities[indPtr[i] : indPtr[i + 1]].sum()
            colIndsProbabilities[indPtr[i] : indPtr[i + 1]] = numpy.cumsum(
                colIndsProbabilities[indPtr[i] : indPtr[i + 1]]
            )

        r = numpy.zeros(self.m)
        lmbda = 0.001
        rho = 1.0
        numAucSamples = 100

        def run():
            numRuns = 10
            for i in range(numRuns):
                objectiveApprox(indPtr, colInds, indPtr, colInds, U, V, r, numAucSamples, lmbda, rho, False)

        ProfileUtils.profile("run()", globals(), locals())
開發者ID:kentwang,項目名稱:sandbox,代碼行數:26,代碼來源:MaxLocalAUCCythonProfile.py

示例2: profileDerivativeUiApprox

    def profileDerivativeUiApprox(self):
        k = 10
        U = numpy.random.rand(self.m, k)
        V = numpy.random.rand(self.n, k)

        indPtr, colInds = SparseUtils.getOmegaListPtr(self.X)

        gp = numpy.random.rand(self.n)
        gp /= gp.sum()
        gq = numpy.random.rand(self.n)
        gq /= gq.sum()

        j = 3
        numRowSamples = 100
        numAucSamples = 10

        permutedRowInds = numpy.array(numpy.random.permutation(self.m), numpy.uint32)
        permutedColInds = numpy.array(numpy.random.permutation(self.n), numpy.uint32)

        maxLocalAuc = MaxLocalAUC(k, w=0.9)
        normGp, normGq = maxLocalAuc.computeNormGpq(indPtr, colInds, gp, gq, self.m)

        lmbda = 0.001
        normalise = True

        learner = MaxLocalAUCCython()

        def run():
            numRuns = 10
            for j in range(numRuns):
                for i in range(self.m):
                    learner.derivativeUiApprox(indPtr, colInds, U, V, gp, gq, permutedColInds, i)

        ProfileUtils.profile("run()", globals(), locals())
開發者ID:kentwang,項目名稱:sandbox,代碼行數:34,代碼來源:MaxLocalAUCCythonProfile.py

示例3: profileDot2

 def profileDot2(self): 
     density = 0.01
     m = 10000
     n = 10000
     a_sppy = sppy.rand((m, n), density, storagetype='row')
     a_sppy_T = sppy.csarray(a_sppy.T, storagetype="col")
     ProfileUtils.profile('a_sppy.dot(a_sppy_T)', globals(), locals())
開發者ID:charanpald,項目名稱:sppy,代碼行數:7,代碼來源:csarrayProfile.py

示例4: profileDot

 def profileDot(self): 
     #Create random sparse matrix and numpy array 
     #Test speed of array creation 
     numpy.random.seed(21)
     m = 1000000
     n = 1000000      
     numInds = 10000000
     
     inds = numpy.random.randint(0, m*n, numInds)
     inds = numpy.unique(inds)
     vals = numpy.random.randn(inds.shape[0])
     
     rowInds, colInds = numpy.unravel_index(inds, (m, n), order="FORTRAN")
     rowInds = numpy.array(rowInds, numpy.int32)
     colInds = numpy.array(colInds, numpy.int32)
             
     A = csarray((m, n), storageType="rowMajor")
     A.put(vals, rowInds, colInds, True)
     A.compress()
     
     p = 500
     W = numpy.random.rand(n, p)
     
     
     ProfileUtils.profile('A.dot(W)', globals(), locals())
     
     #Compare versus scipy 
     #B = scipy.sparse.csc_matrix((vals, (rowInds, colInds)), (m, n))        
     #ProfileUtils.profile('B.dot(W)', globals(), locals())
     
     #Compare versus pdot       
     ProfileUtils.profile('A.pdot(W)', globals(), locals())
開發者ID:charanpald,項目名稱:sppy,代碼行數:32,代碼來源:csarrayProfile.py

示例5: profileRunExperiment

 def profileRunExperiment(self):
     
     def run(): 
         dataArgs = argparse.Namespace()
         dataArgs.maxIter = 3 
         #Set iterStartDate to None for all iterations 
         #dataArgs.iterStartTimeStamp = None 
         dataArgs.iterStartTimeStamp = time.mktime(datetime(2005,1,1).timetuple())
         generator = MovieLensDataset(maxIter=dataArgs.maxIter, iterStartTimeStamp=dataArgs.iterStartTimeStamp)        
         
         defaultAlgoArgs = argparse.Namespace()
         defaultAlgoArgs.ks = numpy.array(2**numpy.arange(6, 7, 0.5), numpy.int)
         defaultAlgoArgs.svdAlgs = ["rsvd"]   
         defaultAlgoArgs.runSoftImpute = True
         
         dataParser = argparse.ArgumentParser(description="", add_help=False)
         dataParser.add_argument("-h", "--help", action="store_true", help="show this help message and exit")
         devNull, remainingArgs = dataParser.parse_known_args(namespace=dataArgs)
         
         dataArgs.extendedDirName = ""
         dataArgs.extendedDirName += "MovieLensDataset"
         
         recommendExpHelper = RecommendExpHelper(generator.getTrainIteratorFunc, generator.getTestIteratorFunc, remainingArgs, defaultAlgoArgs, dataArgs.extendedDirName)
         recommendExpHelper.printAlgoArgs()
         #    os.makedirs(resultsDir, exist_ok=True) # for python 3.2
         try:
             os.makedirs(recommendExpHelper.resultsDir)
         except OSError as err:
             if err.errno != errno.EEXIST:
                 raise
         
         recommendExpHelper.runExperiment()
         
     ProfileUtils.profile('run()', globals(), locals())    
開發者ID:charanpald,項目名稱:wallhack,代碼行數:34,代碼來源:MovieLensExpProfile.py

示例6: profileModelSelect

 def profileModelSelect(self):
     lmbdas = numpy.linspace(1.0, 0.01, 5)
     softImpute = IterativeSoftImpute(k=500)
     
     folds = 5
     cvInds = Sampling.randCrossValidation(folds, self.X.nnz)
     ProfileUtils.profile('softImpute.modelSelect(self.X, lmbdas, cvInds)', globals(), locals())
開發者ID:charanpald,項目名稱:sandbox,代碼行數:7,代碼來源:IterativeSoftImputeProfile.py

示例7: profileEigpsd

 def profileEigpsd(self):
     n = 1000 
     p = 0.1 
     L = scipy.sparse.rand(n, n, p)            
     L = L.T.dot(L)
         
     cols = 500
     ProfileUtils.profile('Nystrom.eigpsd(L, cols)', globals(), locals())
開發者ID:charanpald,項目名稱:sandbox,代碼行數:8,代碼來源:NystromProfile.py

示例8: profilePutPySparse

 def profilePutPySparse(self): 
     
     def runPut(): 
         A = spmatrix.ll_mat(self.N, self.N)
         for i in range(self.k):         
             A.put(self.val, self.rowInds, self.colInds)
     
     ProfileUtils.profile('runPut()', globals(), locals())
開發者ID:charanpald,項目名稱:sppy,代碼行數:8,代碼來源:csarrayProfile.py

示例9: profilePut2

 def profilePut2(self):
     def runPut(): 
         
         for i in range(self.k):         
             A = csarray((self.N, self.N))
             #A[(self.rowInds, self.colInds)] = self.val 
             A.put(self.val, self.rowInds, self.colInds)
     
     ProfileUtils.profile('runPut()', globals(), locals())
開發者ID:charanpald,項目名稱:sppy,代碼行數:9,代碼來源:csarrayProfile.py

示例10: profileModelSelection

 def profileModelSelection(self): 
     dataset = ArnetMinerDataset(runLSI=False)   
     dataset.overwrite = True
     dataset.overwriteVectoriser = True
     dataset.overwriteModel = True
     
     dataset.dataFilename = dataset.dataDir + "DBLP-citation-100000.txt"
     
     ProfileUtils.profile('dataset.modelSelection()', globals(), locals())
開發者ID:charanpald,項目名稱:wallhack,代碼行數:9,代碼來源:ArnetMinerDatasetProfile.py

示例11: profileGenerateSparseBinaryMatrixPL

 def profileGenerateSparseBinaryMatrixPL(self): 
     m = 500 
     n = 200 
     k = 10
     density = 0.2
     numpy.random.seed(21)
     #X = SparseUtils.generateSparseBinaryMatrixPL((m,n), k, density=density, csarray=True)   
     
     ProfileUtils.profile('SparseUtilsCython.generateSparseBinaryMatrixPL((m,n), k, density=density, csarray=True)', globals(), locals()) 
開發者ID:charanpald,項目名稱:sandbox,代碼行數:9,代碼來源:SparseUtilsCythonProfile.py

示例12: profileMC2

 def profileMC2(self): 
     numVals = 10000
     list1 = numpy.random.permutation(numVals).tolist()      
     list2 = numpy.random.permutation(numVals).tolist()   
     lists = [list1, list2]
     
     itemList = numpy.arange(numVals).tolist()
     
     ProfileUtils.profile('RankAggregator.MC2(lists, itemList)', globals(), locals())  
開發者ID:charanpald,項目名稱:wallhack,代碼行數:9,代碼來源:RankAggregatorProfile.py

示例13: profilePartialReconstructValsPQ

 def profilePartialReconstructValsPQ(self):
     shape = 5000, 10000
     r = 100 
     U, s, V = SparseUtils.generateLowRank(shape, r)
     
     k = 1000000 
     inds = numpy.unravel_index(numpy.random.randint(0, shape[0]*shape[1], k), dims=shape)
     
     ProfileUtils.profile('SparseUtilsCython.partialReconstructValsPQ(inds[0], inds[1], U, V)', globals(), locals())
開發者ID:charanpald,項目名稱:sandbox,代碼行數:9,代碼來源:SparseUtilsCythonProfile.py

示例14: profileSvd

 def profileSvd(self):
     n = 5000 
     p = 0.1 
     L = scipy.sparse.rand(n, n, p)            
     L = L.T.dot(L)
         
     k = 50 
     q = 2
     ProfileUtils.profile('RandomisedSVD.svd(L, k, q)', globals(), locals())
開發者ID:charanpald,項目名稱:sandbox,代碼行數:9,代碼來源:RandomisedSvdProfile.py

示例15: profileSliceSpa

 def profileSliceSpa(self): 
     A = csarray((self.N, self.N))
     A.put(self.val, self.rowInds, self.colInds)
     
     def runSlice():     
         for i in range(10):  
             sliceInds = numpy.array(numpy.random.randint(0, self.M, self.N), dtype=numpy.int)
             B = A[:, sliceInds]
         
     ProfileUtils.profile('runSlice()', globals(), locals())
開發者ID:charanpald,項目名稱:sppy,代碼行數:10,代碼來源:csarrayProfile.py


注:本文中的sandbox.util.ProfileUtils.ProfileUtils類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。