本文整理匯總了Python中sage.schemes.projective.projective_space.ProjectiveSpace類的典型用法代碼示例。如果您正苦於以下問題:Python ProjectiveSpace類的具體用法?Python ProjectiveSpace怎麽用?Python ProjectiveSpace使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了ProjectiveSpace類的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: parity_check_matrix
def parity_check_matrix(self):
r"""
Return a parity check matrix of ``self``.
The construction of the parity check matrix in case ``self``
is not a binary code is not really well documented.
Regarding the choice of projective geometry, one might check:
- the note over section 2.3 in [Rot2006]_, pages 47-48
- the dedicated paragraph in [HP2003]_, page 30
EXAMPLES::
sage: C = codes.HammingCode(GF(3), 3)
sage: C.parity_check_matrix()
[1 0 1 1 0 1 0 1 1 1 0 1 1]
[0 1 1 2 0 0 1 1 2 0 1 1 2]
[0 0 0 0 1 1 1 1 1 2 2 2 2]
"""
n = self.length()
F = self.base_field()
m = n - self.dimension()
MS = MatrixSpace(F, n, m)
X = ProjectiveSpace(m - 1, F)
PFn = [list(p) for p in X.point_set(F).points()]
H = MS(PFn).transpose()
H = H[::-1, :]
H.set_immutable()
return H
示例2: HammingCode
def HammingCode(r,F):
r"""
Implements the Hamming codes.
The `r^{th}` Hamming code over `F=GF(q)` is an
`[n,k,d]` code with length `n=(q^r-1)/(q-1)`,
dimension `k=(q^r-1)/(q-1) - r` and minimum distance
`d=3`. The parity check matrix of a Hamming code has rows
consisting of all nonzero vectors of length r in its columns,
modulo a scalar factor so no parallel columns arise. A Hamming code
is a single error-correcting code.
INPUT:
- ``r`` - an integer 2
- ``F`` - a finite field.
OUTPUT: Returns the r-th q-ary Hamming code.
EXAMPLES::
sage: codes.HammingCode(3,GF(2))
Linear code of length 7, dimension 4 over Finite Field of size 2
sage: C = codes.HammingCode(3,GF(3)); C
Linear code of length 13, dimension 10 over Finite Field of size 3
sage: C.minimum_distance()
3
sage: C.minimum_distance(algorithm='gap') # long time, check d=3
3
sage: C = codes.HammingCode(3,GF(4,'a')); C
Linear code of length 21, dimension 18 over Finite Field in a of size 2^2
While the ``codes`` object now gathers all code constructors,
``HammingCode`` is still available in the global namespace::
sage: HammingCode(3,GF(2))
doctest:...: DeprecationWarning: This method soon will not be available in that way anymore. To use it, you can now call it by typing codes.HammingCode
See http://trac.sagemath.org/15445 for details.
Linear code of length 7, dimension 4 over Finite Field of size 2
"""
q = F.order()
n = (q**r-1)/(q-1)
k = n-r
MS = MatrixSpace(F,n,r)
X = ProjectiveSpace(r-1,F)
PFn = [list(p) for p in X.point_set(F).points(F)]
H = MS(PFn).transpose()
Cd = LinearCode(H)
# Hamming code always has distance 3, so we provide the distance.
return LinearCode(Cd.dual_code().gen_mat(), d=3)
示例3: __init__
def __init__(self,J):
"""
"""
R = J.base_ring()
PP = ProjectiveSpace(3,R,["X0","X1","X2","X3"])
X0, X1, X2, X3 = PP.gens()
C = J.curve()
f, h = C.hyperelliptic_polynomials()
a12 = f[0]; a10 = f[1]; a8 = f[2];
a6 = f[3]; a4 = f[4]; a2 = f[5]; a0 = f[6]
if h != 0:
c6 = h[0]; c4 = h[1]; c2 = h[2]; c0 = h[3]
a12, a10, a8, a6, a4, a2, a0 = \
(4*a12 + c6**2,
4*a10 + 2*c4*c6,
4*a8 + 2*c2*c6 + c4**2,
4*a6 + 2*c0*c6 + 2*c2*c4,
4*a4 + 2*c0*c4 + c2**2,
4*a2 + 2*c0*c2,
4*a0 + c0**2)
F = \
(-4*a8*a12 + a10**2)*X0**4 + \
-4*a6*a12*X0**3*X1 + \
-2*a6*a10*X0**3*X2 + \
-4*a12*X0**3*X3 + \
-4*a4*a12*X0**2*X1**2 + \
(4*a2*a12 - 4*a4*a10)*X0**2*X1*X2 + \
-2*a10*X0**2*X1*X3 + \
(-4*a0*a12 + 2*a2*a10 - 4*a4*a8 + a6**2)*X0**2*X2**2 + \
-4*a8*X0**2*X2*X3 + \
-4*a2*a12*X0*X1**3 + \
(8*a0*a12 - 4*a2*a10)*X0*X1**2*X2 + \
(4*a0*a10 - 4*a2*a8)*X0*X1*X2**2 + \
-2*a6*X0*X1*X2*X3 + \
-2*a2*a6*X0*X2**3 + \
-4*a4*X0*X2**2*X3 + \
-4*X0*X2*X3**2 + \
-4*a0*a12*X1**4 + \
-4*a0*a10*X1**3*X2 + \
-4*a0*a8*X1**2*X2**2 + \
X1**2*X3**2 + \
-4*a0*a6*X1*X2**3 + \
-2*a2*X1*X2**2*X3 + \
(-4*a0*a4 + a2**2)*X2**4 + \
-4*a0*X2**3*X3
AlgebraicScheme_subscheme_projective.__init__(self, PP, F)
X, Y, Z = C.ambient_space().gens()
if a0 ==0:
a0 = a2
phi = Hom(C,self)([0,Z**2,X*Z,a0*X**2],Schemes())
C._kummer_morphism = phi
J._kummer_surface = self
示例4: HammingCode
def HammingCode(r,F):
r"""
Implements the Hamming codes.
The `r^{th}` Hamming code over `F=GF(q)` is an
`[n,k,d]` code with length `n=(q^r-1)/(q-1)`,
dimension `k=(q^r-1)/(q-1) - r` and minimum distance
`d=3`. The parity check matrix of a Hamming code has rows
consisting of all nonzero vectors of length r in its columns,
modulo a scalar factor so no parallel columns arise. A Hamming code
is a single error-correcting code.
INPUT:
- ``r`` - an integer 2
- ``F`` - a finite field.
OUTPUT: Returns the r-th q-ary Hamming code.
EXAMPLES::
sage: codes.HammingCode(3,GF(2))
Linear code of length 7, dimension 4 over Finite Field of size 2
sage: C = codes.HammingCode(3,GF(3)); C
Linear code of length 13, dimension 10 over Finite Field of size 3
sage: C.minimum_distance()
3
sage: C.minimum_distance(algorithm='gap') # long time, check d=3
3
sage: C = codes.HammingCode(3,GF(4,'a')); C
Linear code of length 21, dimension 18 over Finite Field in a of size 2^2
"""
q = F.order()
n = (q**r-1)/(q-1)
k = n-r
MS = MatrixSpace(F,n,r)
X = ProjectiveSpace(r-1,F)
PFn = [list(p) for p in X.point_set(F).points(F)]
H = MS(PFn).transpose()
Cd = LinearCode(H)
# Hamming code always has distance 3, so we provide the distance.
return LinearCode(Cd.dual_code().generator_matrix(), d=3)
示例5: __init__
def __init__(self, poly, ambient=None):
"""
Return the projective hypersurface in the space ambient
defined by the polynomial poly.
If ambient is not given, it will be constructed based on
poly.
EXAMPLES::
sage: P.<x, y, z> = ProjectiveSpace(ZZ, 2)
sage: ProjectiveHypersurface(x-y, P)
Projective hypersurface defined by x - y in Projective Space of dimension 2 over Integer Ring
::
sage: R.<x, y, z> = QQ[]
sage: ProjectiveHypersurface(x-y)
Projective hypersurface defined by x - y in Projective Space of dimension 2 over Rational Field
TESTS::
sage: H = ProjectiveHypersurface(x-y)
sage: H == loads(dumps(H))
True
"""
if not is_MPolynomial(poly):
raise TypeError, \
"Defining polynomial (=%s) must be a multivariate polynomial."%poly
if not poly.is_homogeneous():
raise TypeError, "Defining polynomial (=%s) must be homogeneous."%poly
if ambient == None:
R = poly.parent()
from sage.schemes.projective.projective_space import ProjectiveSpace
ambient = ProjectiveSpace(R.base_ring(), R.ngens()-1)
ambient._coordinate_ring = R
AlgebraicScheme_subscheme_projective.__init__(self, ambient, [poly])
示例6: parametrization
def parametrization(self, point=None, morphism=True):
r"""
Return a parametrization `f` of ``self`` together with the
inverse of `f`.
If ``point`` is specified, then that point is used
for the parametrization. Otherwise, use ``self.rational_point()``
to find a point.
If ``morphism`` is True, then `f` is returned in the form
of a Scheme morphism. Otherwise, it is a tuple of polynomials
that gives the parametrization.
ALGORITHM:
Uses the PARI/GP function ``qfparam``.
EXAMPLES ::
sage: c = Conic([1,1,-1])
sage: c.parametrization()
(Scheme morphism:
From: Projective Space of dimension 1 over Rational Field
To: Projective Conic Curve over Rational Field defined by x^2 + y^2 - z^2
Defn: Defined on coordinates by sending (x : y) to
(2*x*y : x^2 - y^2 : x^2 + y^2),
Scheme morphism:
From: Projective Conic Curve over Rational Field defined by x^2 + y^2 - z^2
To: Projective Space of dimension 1 over Rational Field
Defn: Defined on coordinates by sending (x : y : z) to
(1/2*x : -1/2*y + 1/2*z))
An example with ``morphism = False`` ::
sage: R.<x,y,z> = QQ[]
sage: C = Curve(7*x^2 + 2*y*z + z^2)
sage: (p, i) = C.parametrization(morphism = False); (p, i)
([-2*x*y, x^2 + 7*y^2, -2*x^2], [-1/2*x, 1/7*y + 1/14*z])
sage: C.defining_polynomial()(p)
0
sage: i[0](p) / i[1](p)
x/y
A ``ValueError`` is raised if ``self`` has no rational point ::
sage: C = Conic(x^2 + 2*y^2 + z^2)
sage: C.parametrization()
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + 2*y^2 + z^2 has no rational points over Rational Field!
A ``ValueError`` is raised if ``self`` is not smooth ::
sage: C = Conic(x^2 + y^2)
sage: C.parametrization()
Traceback (most recent call last):
...
ValueError: The conic self (=Projective Conic Curve over Rational Field defined by x^2 + y^2) is not smooth, hence does not have a parametrization.
"""
if (not self._parametrization is None) and not point:
par = self._parametrization
else:
if not self.is_smooth():
raise ValueError("The conic self (=%s) is not smooth, hence does not have a parametrization." % self)
if point is None:
point = self.rational_point()
point = Sequence(point)
Q = PolynomialRing(QQ, 'x,y')
[x, y] = Q.gens()
gens = self.ambient_space().gens()
M = self.symmetric_matrix()
M *= lcm([ t.denominator() for t in M.list() ])
par1 = qfparam(M, point)
B = Matrix([[par1[i][j] for j in range(3)] for i in range(3)])
# self is in the image of B and does not lie on a line,
# hence B is invertible
A = B.inverse()
par2 = [sum([A[i,j]*gens[j] for j in range(3)]) for i in [1,0]]
par = ([Q(pol(x/y)*y**2) for pol in par1], par2)
if self._parametrization is None:
self._parametrization = par
if not morphism:
return par
P1 = ProjectiveSpace(self.base_ring(), 1, 'x,y')
return P1.hom(par[0],self), self.Hom(P1)(par[1], check = False)
示例7: EllipticCurve_from_cubic
#.........這裏部分代碼省略.........
sage: cubic = x^2*y + 4*x*y^2 + x^2*z + 8*x*y*z + 4*y^2*z + 9*x*z^2 + 9*y*z^2
sage: EllipticCurve_from_cubic(cubic, [1,-1,1], morphism=False)
Elliptic Curve defined by y^2 - 882*x*y - 2560000*y = x^3 - 127281*x^2 over Rational Field
"""
import sage.matrix.all as matrix
# check the input
R = F.parent()
if not is_MPolynomialRing(R):
raise TypeError('equation must be a polynomial')
if R.ngens() != 3:
raise TypeError('equation must be a polynomial in three variables')
if not F.is_homogeneous():
raise TypeError('equation must be a homogeneous polynomial')
K = F.parent().base_ring()
try:
P = [K(c) for c in P]
except TypeError:
raise TypeError('cannot convert %s into %s'%(P,K))
if F(P) != 0:
raise ValueError('%s is not a point on %s'%(P,F))
if len(P) != 3:
raise TypeError('%s is not a projective point'%P)
x, y, z = R.gens()
# First case: if P = P2 then P is a flex
P2 = chord_and_tangent(F, P)
if are_projectively_equivalent(P, P2, base_ring=K):
# find the tangent to F in P
dx = K(F.derivative(x)(P))
dy = K(F.derivative(y)(P))
dz = K(F.derivative(z)(P))
# find a second point Q on the tangent line but not on the cubic
for tangent in [[dy, -dx, K.zero()], [dz, K.zero(), -dx], [K.zero(), -dz, dx]]:
tangent = projective_point(tangent)
Q = [tangent[0]+P[0], tangent[1]+P[1], tangent[2]+P[2]]
F_Q = F(Q)
if F_Q != 0: # At most one further point may accidentally be on the cubic
break
assert F_Q != 0
# pick linearly independent third point
for third_point in [(1,0,0), (0,1,0), (0,0,1)]:
M = matrix.matrix(K, [Q, P, third_point]).transpose()
if M.is_invertible():
break
F2 = R(M.act_on_polynomial(F))
# scale and dehomogenise
a = K(F2.coefficient(x**3))
F3 = F2/a
b = K(F3.coefficient(y*y*z))
S = rings.PolynomialRing(K, 'x,y,z')
# elliptic curve coordinates
X, Y, Z = S.gen(0), S.gen(1), S(-1/b)*S.gen(2)
F4 = F3(X, Y, Z)
E = EllipticCurve(F4.subs(z=1))
if not morphism:
return E
inv_defining_poly = [ M[i,0]*X + M[i,1]*Y + M[i,2]*Z for i in range(3) ]
inv_post = -1/a
M = M.inverse()
trans_x, trans_y, trans_z = [ M[i,0]*x + M[i,1]*y + M[i,2]*z for i in range(3) ]
fwd_defining_poly = [trans_x, trans_y, -b*trans_z]
fwd_post = -a
# Second case: P is not a flex, then P, P2, P3 are different
else:
P3 = chord_and_tangent(F, P2)
# send P, P2, P3 to (1:0:0), (0:1:0), (0:0:1) respectively
M = matrix.matrix(K, [P, P2, P3]).transpose()
F2 = M.act_on_polynomial(F)
# substitute x = U^2, y = V*W, z = U*W, and rename (x,y,z)=(U,V,W)
F3 = F2.substitute({x:x**2, y:y*z, z:x*z}) // (x**2*z)
# scale and dehomogenise
a = K(F3.coefficient(x**3))
F4 = F3/a
b = K(F4.coefficient(y*y*z))
# change to a polynomial in only two variables
S = rings.PolynomialRing(K, 'x,y,z')
# elliptic curve coordinates
X, Y, Z = S.gen(0), S.gen(1), S(-1/b)*S.gen(2)
F5 = F4(X, Y, Z)
E = EllipticCurve(F5.subs(z=1))
if not morphism:
return E
inv_defining_poly = [ M[i,0]*X*X + M[i,1]*Y*Z + M[i,2]*X*Z for i in range(3) ]
inv_post = -1/a/(X**2)/Z
M = M.inverse()
trans_x, trans_y, trans_z = [
(M[i,0]*x + M[i,1]*y + M[i,2]*z) for i in range(3) ]
fwd_defining_poly = [ trans_x*trans_z, trans_x*trans_y, -b*trans_z*trans_z ]
fwd_post = -a/(trans_x*trans_z*trans_z)
# Construct the morphism
from sage.schemes.projective.projective_space import ProjectiveSpace
P2 = ProjectiveSpace(2, K, names=map(str, R.gens()))
cubic = P2.subscheme(F)
from sage.schemes.elliptic_curves.weierstrass_transform import \
WeierstrassTransformationWithInverse
return WeierstrassTransformationWithInverse(
cubic, E, fwd_defining_poly, fwd_post, inv_defining_poly, inv_post)
示例8: projective_embedding
def projective_embedding(self, i=None, PP=None):
"""
Returns a morphism from this space into an ambient projective space
of the same dimension.
INPUT:
- ``i`` -- integer (default: dimension of self = last
coordinate) determines which projective embedding to compute. The
embedding is that which has a 1 in the i-th coordinate, numbered
from 0.
- ``PP`` -- (default: None) ambient projective space, i.e.,
codomain of morphism; this is constructed if it is not
given.
EXAMPLES::
sage: AA = AffineSpace(2, QQ, 'x')
sage: pi = AA.projective_embedding(0); pi
Scheme morphism:
From: Affine Space of dimension 2 over Rational Field
To: Projective Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x0, x1) to
(1 : x0 : x1)
sage: z = AA(3, 4)
sage: pi(z)
(1/4 : 3/4 : 1)
sage: pi(AA(0,2))
(1/2 : 0 : 1)
sage: pi = AA.projective_embedding(1); pi
Scheme morphism:
From: Affine Space of dimension 2 over Rational Field
To: Projective Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x0, x1) to
(x0 : 1 : x1)
sage: pi(z)
(3/4 : 1/4 : 1)
sage: pi = AA.projective_embedding(2)
sage: pi(z)
(3 : 4 : 1)
::
sage: A.<x,y> = AffineSpace(ZZ, 2)
sage: A.projective_embedding(2).codomain().affine_patch(2) == A
True
"""
n = self.dimension_relative()
if i is None:
try:
i = self._default_embedding_index
except AttributeError:
i = int(n)
else:
i = int(i)
try:
phi = self.__projective_embedding[i]
#assume that if you've passed in a new codomain you want to override
#the existing embedding
if PP is None or phi.codomain() == PP:
return(phi)
except AttributeError:
self.__projective_embedding = {}
except KeyError:
pass
#if no i-th embedding exists, we may still be here with PP==None
if PP is None:
from sage.schemes.projective.projective_space import ProjectiveSpace
PP = ProjectiveSpace(n, self.base_ring())
elif PP.dimension_relative() != n:
raise ValueError("projective Space must be of dimension %s"%(n))
R = self.coordinate_ring()
v = list(R.gens())
if n < 0 or n >self.dimension_relative():
raise ValueError("argument i (=%s) must be between 0 and %s, inclusive"%(i,n))
v.insert(i, R(1))
phi = self.hom(v, PP)
self.__projective_embedding[i] = phi
#make affine patch and projective embedding match
PP.affine_patch(i,self)
return phi
示例9: homogenize
def homogenize(self,n,newvar='h'):
r"""
Return the homogenization of ``self``. If ``self.domain()`` is a subscheme, the domain of
the homogenized map is the projective embedding of ``self.domain()``
INPUT:
- ``newvar`` -- the name of the homogenization variable (only used when ``self.domain()`` is affine space)
- ``n`` -- the n-th projective embedding into projective space
OUTPUT:
- :class:`SchemMorphism_polynomial_projective_space`
EXAMPLES::
sage: A.<x,y>=AffineSpace(ZZ,2)
sage: H=Hom(A,A)
sage: f=H([(x^2-2)/x^5,y^2])
sage: f.homogenize(2,'z')
Scheme endomorphism of Projective Space of dimension 2 over Integer Ring
Defn: Defined on coordinates by sending (x : y : z) to
(x^2*z^5 - 2*z^7 : x^5*y^2 : x^5*z^2)
::
sage: A.<x,y>=AffineSpace(CC,2)
sage: H=Hom(A,A)
sage: f=H([(x^2-2)/(x*y),y^2-x])
sage: f.homogenize(0,'z')
Scheme endomorphism of Projective Space of dimension 2 over Complex
Field with 53 bits of precision
Defn: Defined on coordinates by sending (x : y : z) to
(x*y*z^2 : x^2*z^2 + (-2.00000000000000)*z^4 : x*y^3 - x^2*y*z)
::
sage: A.<x,y>=AffineSpace(ZZ,2)
sage: X=A.subscheme([x-y^2])
sage: H=Hom(X,X)
sage: f=H([9*y^2,3*y])
sage: f.homogenize(2)
Scheme endomorphism of Closed subscheme of Projective Space of dimension 2 over Integer Ring defined by:
-x1^2 + x0*x2
Defn: Defined on coordinates by sending (x0 : x1 : x2) to
(9*x0*x2 : 3*x1*x2 : x2^2)
::
sage: R.<t>=PolynomialRing(ZZ)
sage: A.<x,y>=AffineSpace(R,2)
sage: H=Hom(A,A)
sage: f=H([(x^2-2)/y,y^2-x])
sage: f.homogenize(0,'z')
Scheme endomorphism of Projective Space of dimension 2 over Univariate
Polynomial Ring in t over Integer Ring
Defn: Defined on coordinates by sending (x : y : z) to
(y*z^2 : x^2*z + (-2)*z^3 : y^3 - x*y*z)
"""
A=self.domain()
B=self.codomain()
N=A.ambient_space().dimension_relative()
NB=B.ambient_space().dimension_relative()
Vars=list(A.ambient_space().variable_names())+[newvar]
S=PolynomialRing(A.base_ring(),Vars)
try:
l=lcm([self[i].denominator() for i in range(N)])
except Exception: #no lcm
l=prod([self[i].denominator() for i in range(N)])
from sage.rings.polynomial.polynomial_ring import PolynomialRing_general
from sage.rings.polynomial.multi_polynomial_ring_generic import MPolynomialRing_generic
if self.domain().base_ring()==RealField() or self.domain().base_ring()==ComplexField():
F=[S(((self[i]*l).numerator())._maxima_().divide(self[i].denominator())[0].sage()) for i in range(N)]
elif isinstance(self.domain().base_ring(),(PolynomialRing_general,MPolynomialRing_generic)):
F=[S(((self[i]*l).numerator())._maxima_().divide(self[i].denominator())[0].sage()) for i in range(N)]
else:
F=[S(self[i]*l) for i in range(N)]
F.insert(n,S(l))
d=max([F[i].degree() for i in range(N+1)])
F=[F[i].homogenize(newvar)*S.gen(N)**(d-F[i].degree()) for i in range(N+1)]
from sage.schemes.affine.affine_space import is_AffineSpace
if is_AffineSpace(A)==True:
from sage.schemes.projective.projective_space import ProjectiveSpace
X=ProjectiveSpace(A.base_ring(),NB,Vars)
else:
X=A.projective_embedding(n).codomain()
phi=S.hom(X.ambient_space().gens(),X.ambient_space().coordinate_ring())
F=[phi(f) for f in F]
H=Hom(X,X)
return(H(F))
示例10: segre_embedding
def segre_embedding(self, PP=None, var='u'):
r"""
Return the Segre embedding of ``self`` into the appropriate
projective space.
INPUT:
- ``PP`` -- (default: ``None``) ambient image projective space;
this is constructed if it is not given.
- ``var`` -- string, variable name of the image projective space, default `u` (optional)
OUTPUT:
Hom -- from ``self`` to the appropriate subscheme of projective space
.. TODO::
Cartesian products with more than two components
EXAMPLES::
sage: X.<y0,y1,y2,y3,y4,y5> = ProductProjectiveSpaces(ZZ,[2,2])
sage: phi = X.segre_embedding(); phi
Scheme morphism:
From: Product of projective spaces P^2 x P^2 over Integer Ring
To: Closed subscheme of Projective Space of dimension 8 over Integer Ring defined by:
-u5*u7 + u4*u8,
-u5*u6 + u3*u8,
-u4*u6 + u3*u7,
-u2*u7 + u1*u8,
-u2*u4 + u1*u5,
-u2*u6 + u0*u8,
-u1*u6 + u0*u7,
-u2*u3 + u0*u5,
-u1*u3 + u0*u4
Defn: Defined by sending (y0 : y1 : y2 , y3 : y4 : y5) to
(y0*y3 : y0*y4 : y0*y5 : y1*y3 : y1*y4 : y1*y5 : y2*y3 : y2*y4 : y2*y5).
::
sage: T = ProductProjectiveSpaces([1,2],CC,'z')
sage: T.segre_embedding()
Scheme morphism:
From: Product of projective spaces P^1 x P^2 over Complex Field with 53 bits of precision
To: Closed subscheme of Projective Space of dimension 5 over Complex Field with 53 bits of precision defined by:
-u2*u4 + u1*u5,
-u2*u3 + u0*u5,
-u1*u3 + u0*u4
Defn: Defined by sending (z0 : z1 , z2 : z3 : z4) to
(z0*z2 : z0*z3 : z0*z4 : z1*z2 : z1*z3 : z1*z4).
"""
N = self._dims
if len(N) > 2:
raise NotImplementedError("Cannot have more than two components.")
M = (N[0]+1)*(N[1]+1)-1
vars = list(self.coordinate_ring().variable_names()) + [var + str(i) for i in range(M+1)]
R = PolynomialRing(self.base_ring(),self.ngens()+M+1, vars, order='lex')
#set-up the elimination for the segre embedding
mapping = []
k = self.ngens()
for i in range(N[0]+1):
for j in range(N[0]+1,N[0]+N[1]+2):
mapping.append(R.gen(k)-R(self.gen(i)*self.gen(j)))
k+=1
#change the defining ideal of the subscheme into the variables
I = R.ideal(list(self.defining_polynomials()) + mapping)
J = I.groebner_basis()
s = set(R.gens()[:self.ngens()])
n = len(J)-1
L = []
while s.isdisjoint(J[n].variables()):
L.append(J[n])
n = n-1
#create new subscheme
if PP is None:
PS = ProjectiveSpace(self.base_ring(),M,R.gens()[self.ngens():])
Y = PS.subscheme(L)
else:
if PP.dimension_relative()!= M:
raise ValueError("Projective Space %s must be dimension %s")%(PP, M)
S = PP.coordinate_ring()
psi = R.hom([0]*(N[0]+N[1]+2) + list(S.gens()),S)
L = [psi(l) for l in L]
Y = PP.subscheme(L)
#create embedding for points
mapping = []
for i in range(N[0]+1):
for j in range(N[0]+1,N[0]+N[1]+2):
mapping.append(self.gen(i)*self.gen(j))
phi = self.hom(mapping,Y)
return phi
示例11: parametrization
def parametrization(self, point=None, morphism=True):
r"""
Return a parametrization `f` of ``self`` together with the
inverse of `f`.
If ``point`` is specified, then that point is used
for the parametrization. Otherwise, use ``self.rational_point()``
to find a point.
If ``morphism`` is True, then `f` is returned in the form
of a Scheme morphism. Otherwise, it is a tuple of polynomials
that gives the parametrization.
EXAMPLES:
An example over a finite field ::
sage: c = Conic(GF(2), [1,1,1,1,1,0])
sage: c.parametrization()
(Scheme morphism:
From: Projective Space of dimension 1 over Finite Field of size 2
To: Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y
+ y^2 + x*z + y*z
Defn: Defined on coordinates by sending (x : y) to
(x*y + y^2 : x^2 + x*y : x^2 + x*y + y^2),
Scheme morphism:
From: Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y
+ y^2 + x*z + y*z
To: Projective Space of dimension 1 over Finite Field of size 2
Defn: Defined on coordinates by sending (x : y : z) to
(y : x))
An example with ``morphism = False`` ::
sage: R.<x,y,z> = QQ[]
sage: C = Curve(7*x^2 + 2*y*z + z^2)
sage: (p, i) = C.parametrization(morphism = False); (p, i)
([-2*x*y, 7*x^2 + y^2, -2*y^2], [-1/2*x, -1/2*z])
sage: C.defining_polynomial()(p)
0
sage: i[0](p) / i[1](p)
x/y
A ``ValueError`` is raised if ``self`` has no rational point ::
sage: C = Conic(x^2 + y^2 + 7*z^2)
sage: C.parametrization()
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + y^2 + 7*z^2 has no rational points over Rational Field!
A ``ValueError`` is raised if ``self`` is not smooth ::
sage: C = Conic(x^2 + y^2)
sage: C.parametrization()
Traceback (most recent call last):
...
ValueError: The conic self (=Projective Conic Curve over Rational Field defined by x^2 + y^2) is not smooth, hence does not have a parametrization.
"""
if (not self._parametrization is None) and not point:
par = self._parametrization
else:
if not self.is_smooth():
raise ValueError("The conic self (=%s) is not smooth, hence does not have a parametrization." % self)
if point is None:
point = self.rational_point()
point = Sequence(point)
B = self.base_ring()
Q = PolynomialRing(B, 'x,y')
[x, y] = Q.gens()
gens = self.ambient_space().gens()
P = PolynomialRing(B, 4, ['X', 'Y', 'T0', 'T1'])
[X, Y, T0, T1] = P.gens()
c3 = [j for j in range(2,-1,-1) if point[j] != 0][0]
c1 = [j for j in range(3) if j != c3][0]
c2 = [j for j in range(3) if j != c3 and j != c1][0]
L = [0,0,0]
L[c1] = Y*T1*point[c1] + Y*T0
L[c2] = Y*T1*point[c2] + X*T0
L[c3] = Y*T1*point[c3]
bezout = P(self.defining_polynomial()(L) / T0)
t = [bezout([x,y,0,-1]),bezout([x,y,1,0])]
par = (tuple([Q(p([x,y,t[0],t[1]])/y) for p in L]),
tuple([gens[m]*point[c3]-gens[c3]*point[m]
for m in [c2,c1]]))
if self._parametrization is None:
self._parametrization = par
if not morphism:
return par
P1 = ProjectiveSpace(self.base_ring(), 1, 'x,y')
return P1.hom(par[0],self), self.Hom(P1)(par[1], check = False)
示例12: segre_embedding
def segre_embedding(self, PP=None, var='u'):
r"""
Return the Segre embedding of this space into the appropriate
projective space.
INPUT:
- ``PP`` -- (default: ``None``) ambient image projective space;
this is constructed if it is not given.
- ``var`` -- string, variable name of the image projective space, default `u` (optional).
OUTPUT:
Hom -- from this space to the appropriate subscheme of projective space.
.. TODO::
Cartesian products with more than two components.
EXAMPLES::
sage: X.<y0,y1,y2,y3,y4,y5> = ProductProjectiveSpaces(ZZ, [2, 2])
sage: phi = X.segre_embedding(); phi
Scheme morphism:
From: Product of projective spaces P^2 x P^2 over Integer Ring
To: Closed subscheme of Projective Space of dimension 8 over Integer Ring defined by:
-u5*u7 + u4*u8,
-u5*u6 + u3*u8,
-u4*u6 + u3*u7,
-u2*u7 + u1*u8,
-u2*u4 + u1*u5,
-u2*u6 + u0*u8,
-u1*u6 + u0*u7,
-u2*u3 + u0*u5,
-u1*u3 + u0*u4
Defn: Defined by sending (y0 : y1 : y2 , y3 : y4 : y5) to
(y0*y3 : y0*y4 : y0*y5 : y1*y3 : y1*y4 : y1*y5 : y2*y3 : y2*y4 : y2*y5).
::
sage: T = ProductProjectiveSpaces([1, 2], CC, 'z')
sage: T.segre_embedding()
Scheme morphism:
From: Product of projective spaces P^1 x P^2 over Complex Field with 53 bits of precision
To: Closed subscheme of Projective Space of dimension 5 over Complex Field with 53 bits of precision defined by:
-u2*u4 + u1*u5,
-u2*u3 + u0*u5,
-u1*u3 + u0*u4
Defn: Defined by sending (z0 : z1 , z2 : z3 : z4) to
(z0*z2 : z0*z3 : z0*z4 : z1*z2 : z1*z3 : z1*z4).
::
sage: T = ProductProjectiveSpaces([1, 2, 1], QQ, 'z')
sage: T.segre_embedding()
Scheme morphism:
From: Product of projective spaces P^1 x P^2 x P^1 over Rational Field
To: Closed subscheme of Projective Space of dimension 11 over
Rational Field defined by:
-u9*u10 + u8*u11,
-u7*u10 + u6*u11,
-u7*u8 + u6*u9,
-u5*u10 + u4*u11,
-u5*u8 + u4*u9,
-u5*u6 + u4*u7,
-u5*u9 + u3*u11,
-u5*u8 + u3*u10,
-u5*u8 + u2*u11,
-u4*u8 + u2*u10,
-u3*u8 + u2*u9,
-u3*u6 + u2*u7,
-u3*u4 + u2*u5,
-u5*u7 + u1*u11,
-u5*u6 + u1*u10,
-u3*u7 + u1*u9,
-u3*u6 + u1*u8,
-u5*u6 + u0*u11,
-u4*u6 + u0*u10,
-u3*u6 + u0*u9,
-u2*u6 + u0*u8,
-u1*u6 + u0*u7,
-u1*u4 + u0*u5,
-u1*u2 + u0*u3
Defn: Defined by sending (z0 : z1 , z2 : z3 : z4 , z5 : z6) to
(z0*z2*z5 : z0*z2*z6 : z0*z3*z5 : z0*z3*z6 : z0*z4*z5 : z0*z4*z6
: z1*z2*z5 : z1*z2*z6 : z1*z3*z5 : z1*z3*z6 : z1*z4*z5 : z1*z4*z6).
"""
N = self._dims
M = prod([n+1 for n in N]) - 1
CR = self.coordinate_ring()
vars = list(self.coordinate_ring().variable_names()) + [var + str(i) for i in range(M+1)]
R = PolynomialRing(self.base_ring(), self.ngens()+M+1, vars, order='lex')
#set-up the elimination for the segre embedding
mapping = []
k = self.ngens()
index = self.num_components()*[0]
for count in range(M + 1):
#.........這裏部分代碼省略.........
示例13: dual
def dual(self):
r"""
Return the projective dual of the given subscheme of projective space.
INPUT:
- ``X`` -- A subscheme of projective space. At present, ``X`` is
required to be an irreducible and reduced hypersurface defined
over `\QQ` or a finite field.
OUTPUT:
- The dual of ``X`` as a subscheme of the dual projective space.
EXAMPLES:
The dual of a smooth conic in the plane is also a smooth conic::
sage: R.<x, y, z> = QQ[]
sage: P.<x, y, z> = ProjectiveSpace(2, QQ)
sage: I = R.ideal(x^2 + y^2 + z^2)
sage: X = P.subscheme(I)
sage: X.dual()
Closed subscheme of Projective Space of dimension 2 over Rational Field defined by:
y0^2 + y1^2 + y2^2
The dual of the twisted cubic curve in projective 3-space is a singular
quartic surface. In the following example, we compute the dual of this
surface, which by double duality is equal to the twisted cubic itself.
The output is the twisted cubic as an intersection of three quadrics::
sage: R.<x, y, z, w> = QQ[]
sage: P.<x, y, z, w> = ProjectiveSpace(3, QQ)
sage: I = R.ideal(y^2*z^2 - 4*x*z^3 - 4*y^3*w + 18*x*y*z*w - 27*x^2*w^2)
sage: X = P.subscheme(I)
sage: X.dual()
Closed subscheme of Projective Space of dimension 3 over
Rational Field defined by:
y2^2 - y1*y3,
y1*y2 - y0*y3,
y1^2 - y0*y2
The singular locus of the quartic surface in the last example
is itself supported on a twisted cubic::
sage: X.Jacobian().radical()
Ideal (z^2 - 3*y*w, y*z - 9*x*w, y^2 - 3*x*z) of Multivariate
Polynomial Ring in x, y, z, w over Rational Field
An example over a finite field::
sage: R = PolynomialRing(GF(61), 'a,b,c')
sage: P.<a, b, c> = ProjectiveSpace(2, R.base_ring())
sage: X = P.subscheme(R.ideal(a*a+2*b*b+3*c*c))
sage: X.dual()
Closed subscheme of Projective Space of dimension 2 over
Finite Field of size 61 defined by:
y0^2 - 30*y1^2 - 20*y2^2
TESTS::
sage: R = PolynomialRing(Qp(3), 'a,b,c')
sage: P.<a, b, c> = ProjectiveSpace(2, R.base_ring())
sage: X = P.subscheme(R.ideal(a*a+2*b*b+3*c*c))
sage: X.dual()
Traceback (most recent call last):
...
NotImplementedError: base ring must be QQ or a finite field
"""
from sage.libs.singular.function_factory import ff
K = self.base_ring()
if not(is_RationalField(K) or is_FiniteField(K)):
raise NotImplementedError("base ring must be QQ or a finite field")
I = self.defining_ideal()
m = I.ngens()
n = I.ring().ngens() - 1
if (m != 1 or (n < 1) or I.is_zero()
or I.is_trivial() or not I.is_prime()):
raise NotImplementedError("At the present, the method is only"
" implemented for irreducible and"
" reduced hypersurfaces and the given"
" list of generators for the ideal must"
" have exactly one element.")
R = PolynomialRing(K, 'x', n + 1)
from sage.schemes.projective.projective_space import ProjectiveSpace
Pd = ProjectiveSpace(n, K, 'y')
Rd = Pd.coordinate_ring()
x = R.variable_names()
y = Rd.variable_names()
S = PolynomialRing(K, x + y + ('t',))
if S.has_coerce_map_from(I.ring()):
T = PolynomialRing(K, 'w', n + 1)
I_S = (I.change_ring(T)).change_ring(S)
else:
I_S = I.change_ring(S)
f_S = I_S.gens()[0]
z = S.gens()
J = I_S
for i in range(n + 1):
#.........這裏部分代碼省略.........
示例14: homogenize
#.........這裏部分代碼省略.........
sage: A.<x,y>=AffineSpace(ZZ,2)
sage: H=Hom(A,A)
sage: f=H([(x^2-2)/x^5,y^2])
sage: f.homogenize(2,'z')
Scheme endomorphism of Projective Space of dimension 2 over Integer Ring
Defn: Defined on coordinates by sending (x : y : z) to
(x^2*z^5 - 2*z^7 : x^5*y^2 : x^5*z^2)
::
sage: A.<x,y>=AffineSpace(CC,2)
sage: H=Hom(A,A)
sage: f=H([(x^2-2)/(x*y),y^2-x])
sage: f.homogenize((2,0),'z')
Scheme endomorphism of Projective Space of dimension 2 over Complex
Field with 53 bits of precision
Defn: Defined on coordinates by sending (x : y : z) to
(x*y*z^2 : x^2*z^2 + (-2.00000000000000)*z^4 : x*y^3 - x^2*y*z)
::
sage: A.<x,y>=AffineSpace(ZZ,2)
sage: X=A.subscheme([x-y^2])
sage: H=Hom(X,X)
sage: f=H([9*y^2,3*y])
sage: f.homogenize(2)
Scheme endomorphism of Closed subscheme of Projective Space of dimension 2 over Integer Ring defined by:
-x1^2 + x0*x2
Defn: Defined on coordinates by sending (x0 : x1 : x2) to
(9*x0*x2 : 3*x1*x2 : x2^2)
::
sage: R.<t>=PolynomialRing(ZZ)
sage: A.<x,y>=AffineSpace(R,2)
sage: H=Hom(A,A)
sage: f=H([(x^2-2)/y,y^2-x])
sage: f.homogenize((2,0),'z')
Scheme endomorphism of Projective Space of dimension 2 over Univariate
Polynomial Ring in t over Integer Ring
Defn: Defined on coordinates by sending (x : y : z) to
(y*z^2 : x^2*z + (-2)*z^3 : y^3 - x*y*z)
::
sage: A.<x>=AffineSpace(QQ,1)
sage: H=End(A)
sage: f=H([x^2-1])
sage: f.homogenize((1,0),'y')
Scheme endomorphism of Projective Space of dimension 1 over Rational
Field
Defn: Defined on coordinates by sending (x : y) to
(y^2 : x^2 - y^2)
"""
A=self.domain()
B=self.codomain()
N=A.ambient_space().dimension_relative()
NB=B.ambient_space().dimension_relative()
#it is possible to homogenize the domain and codomain at different coordinates
if isinstance(n,(tuple,list)):
ind=tuple(n)
else:
ind=(n,n)
#homogenize the domain
Vars=list(A.ambient_space().variable_names())
Vars.insert(ind[0],newvar)
S=PolynomialRing(A.base_ring(),Vars)
#find the denominators if a rational function
try:
l=lcm([self[i].denominator() for i in range(N)])
except Exception: #no lcm
l=prod([self[i].denominator() for i in range(N)])
from sage.rings.polynomial.polynomial_ring import PolynomialRing_general
from sage.rings.polynomial.multi_polynomial_ring_generic import MPolynomialRing_generic
if self.domain().base_ring()==RealField() or self.domain().base_ring()==ComplexField():
F=[S(((self[i]*l).numerator())._maxima_().divide(self[i].denominator())[0].sage()) for i in range(N)]
elif isinstance(self.domain().base_ring(),(PolynomialRing_general,MPolynomialRing_generic)):
F=[S(((self[i]*l).numerator())._maxima_().divide(self[i].denominator())[0].sage()) for i in range(N)]
else:
F=[S(self[i]*l) for i in range(N)]
#homogenize the codomain
F.insert(ind[1],S(l))
d=max([F[i].degree() for i in range(N+1)])
F=[F[i].homogenize(newvar)*S.gen(N)**(d-F[i].degree()) for i in range(N+1)]
from sage.schemes.affine.affine_space import is_AffineSpace
if is_AffineSpace(A)==True:
from sage.schemes.projective.projective_space import ProjectiveSpace
X=ProjectiveSpace(A.base_ring(),NB,Vars)
else:
X=A.projective_embedding(ind[1]).codomain()
phi=S.hom(X.ambient_space().gens(),X.ambient_space().coordinate_ring())
F=[phi(f) for f in F]
H=Hom(X,X)
return(H(F))