當前位置: 首頁>>代碼示例>>Python>>正文


Python all.PowerSeriesRing類代碼示例

本文整理匯總了Python中sage.rings.all.PowerSeriesRing的典型用法代碼示例。如果您正苦於以下問題:Python PowerSeriesRing類的具體用法?Python PowerSeriesRing怎麽用?Python PowerSeriesRing使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了PowerSeriesRing類的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _e_bounds

 def _e_bounds(self, n, prec):
     p = self._p
     prec = max(2,prec)
     R = PowerSeriesRing(ZZ,'T',prec+1)
     T = R(R.gen(),prec +1)
     w = (1+T)**(p**n) - 1
     return [infinity] + [valuation(w[j],p) for j in range(1,min(w.degree()+1,prec))]
開發者ID:Alwnikrotikz,項目名稱:purplesage,代碼行數:7,代碼來源:padic_lseries.py

示例2: local_coordinates_at_weierstrass

    def local_coordinates_at_weierstrass(self, P, prec=20, name="t"):
        """                                                                                                 
        For a finite Weierstrass point on the hyperelliptic                                
        curve y^2 = f(x), returns (x(t), y(t)) such that                                   
        (y(t))^2 = f(x(t)), where t = y is the local parameter.

        INPUT:
            - P a finite Weierstrass point on self
            - prec: desired precision of the local coordinates
            - name: gen of the power series ring (default: 't')

        OUTPUT:

        (x(t),y(t)) such that y(t)^2 = f(x(t)) and t = y
        is the local parameter at P                                             
                                                                                                            
        EXAMPLES:                                                                                           
            sage: R.<x> = QQ['x']                                                              
            sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)               
            sage: A = H(4, 0)

            sage: x, y = H.local_coordinates_at_weierstrass(A, prec=7)

            sage: x
            4 + 1/360*t^2 - 191/23328000*t^4 + 7579/188956800000*t^6 + O(t^7)
            sage: y 
            t + O(t^7)
            sage: B = H(-5, 0)
            sage: x, y = H.local_coordinates_at_weierstrass(B, prec=5)
            sage: x
            -5 + 1/1260*t^2 + 887/2000376000*t^4 + O(t^5)
            sage: y
            t + O(t^5)
                                                                                                            
        AUTHOR:                                                                                             
            - Jennifer Balakrishnan (2007-12)

            - Francis Clarke (2012-08-26)
        """
        if P[1] != 0:
            raise TypeError, "P = %s is not a finite Weierstrass point. Use local_coordinates_at_nonweierstrass instead!" % P
        L = PowerSeriesRing(self.base_ring(), name)
        t = L.gen()
        pol = self.hyperelliptic_polynomials()[0]
        pol_prime = pol.derivative()
        b = P[0]
        t2 = t ** 2
        c = b + t2 / pol_prime(b)
        c = c.add_bigoh(prec)
        for _ in range(1 + log(prec, 2)):
            c -= (pol(c) - t2) / pol_prime(c)
        return (c, t.add_bigoh(prec))
開發者ID:pombredanne,項目名稱:sage-1,代碼行數:52,代碼來源:hyperelliptic_generic.py

示例3: zeta_series

    def zeta_series(self, n, t):
        """
        Return the zeta series.

        Compute a power series approximation to the zeta function of a
        scheme over a finite field.

        INPUT:

        -  ``n`` -- the number of terms of the power series to
           compute

        -  ``t`` -- the variable which the series should be
           returned


        OUTPUT:

        A power series approximating the zeta function of self

        EXAMPLES::

            sage: P.<x> = PolynomialRing(GF(3))
            sage: C = HyperellipticCurve(x^3+x^2+1)
            sage: R.<t> = PowerSeriesRing(Integers())
            sage: C.zeta_series(4,t)
            1 + 6*t + 24*t^2 + 78*t^3 + 240*t^4 + O(t^5)
            sage: (1+2*t+3*t^2)/(1-t)/(1-3*t) + O(t^5)
            1 + 6*t + 24*t^2 + 78*t^3 + 240*t^4 + O(t^5)

        Note that this function depends on count_points, which is only
        defined for prime order fields::

            sage: C.base_extend(GF(9,'a')).zeta_series(4,t)
            Traceback (most recent call last):
            ...
            NotImplementedError: Point counting only implemented for schemes over prime fields
        """

        F = self.base_ring()
        if not F.is_finite():
            raise TypeError('zeta functions only defined for schemes over finite fields')
        try:
            a = self.count_points(n)
        except AttributeError:
            raise NotImplementedError('count_points() required but not implemented')
        R = PowerSeriesRing(Rationals(), 'u')
        u = R.gen()
        temp = sum(a[i-1]*(u.O(n+1))**i/i for i in range(1,n+1))
        temp2 = temp.exp()
        return(temp2(t).O(n+1))
開發者ID:NitikaAgarwal,項目名稱:sage,代碼行數:51,代碼來源:scheme.py

示例4: __init__

    def __init__(self, group, prec):
        r"""
        Constructor for the Fourier expansion of some
        (specific, basic) modular forms.

        INPUT:

        - ``group``      -- A Hecke triangle group (default: HeckeTriangleGroup(3)).

        - ``prec``       -- An integer (default: 10), the default precision used
                            in calculations in the LaurentSeriesRing or PowerSeriesRing.

        OUTPUT:

        The constructor for Fourier expansion with the specified settings.

        EXAMPLES::

            sage: from sage.modular.modform_hecketriangle.series_constructor import JFSeriesConstructor
            sage: JFC = JFSeriesConstructor()
            sage: JFC
            Power series constructor for Hecke modular forms for n=3 with (basic series) precision 10
            sage: JFC.group()
            Hecke triangle group for n = 3
            sage: JFC.prec()
            10
            sage: JFC._series_ring
            Power Series Ring in q over Rational Field

            sage: JFSeriesConstructor(group=4)
            Power series constructor for Hecke modular forms for n=4 with (basic series) precision 10
            sage: JFSeriesConstructor(group=5, prec=12)
            Power series constructor for Hecke modular forms for n=5 with (basic series) precision 12
            sage: JFSeriesConstructor(group=infinity)
            Power series constructor for Hecke modular forms for n=+Infinity with (basic series) precision 10
        """

        self._group          = group
        self._prec           = prec
        FR = FractionField(PolynomialRing(ZZ,'p,d'))
        self._series_ring    = PowerSeriesRing(FR,'q',default_prec=self._prec)
        #self._series_ring2   = PowerSeriesRing(QQ[['q']],'p',default_prec=self._prec)
        self._qseries_ring   = PowerSeriesRing(QQ,'q',default_prec=self._prec)
開發者ID:jjermann,項目名稱:jacobi_forms,代碼行數:43,代碼來源:series_constructor.py

示例5: local_coordinates_at_nonweierstrass

    def local_coordinates_at_nonweierstrass(self, P, prec=20, name='t'):
        """
        For a non-Weierstrass point `P = (a,b)` on the hyperelliptic
        curve `y^2 = f(x)`, return `(x(t), y(t))` such that `(y(t))^2 = f(x(t))`,
        where `t = x - a` is the local parameter.

        INPUT:

        - ``P = (a, b)`` -- a non-Weierstrass point on self
        - ``prec`` --  desired precision of the local coordinates
        - ``name`` -- gen of the power series ring (default: ``t``)

        OUTPUT:

        `(x(t),y(t))` such that `y(t)^2 = f(x(t))` and `t = x - a`
        is the local parameter at `P`

        EXAMPLES::

            sage: R.<x> = QQ['x']
            sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
            sage: P = H(1,6)
            sage: x,y = H.local_coordinates_at_nonweierstrass(P,prec=5)
            sage: x
            1 + t + O(t^5)
            sage: y
            6 + t - 7/2*t^2 - 1/2*t^3 - 25/48*t^4 + O(t^5)
            sage: Q = H(-2,12)
            sage: x,y = H.local_coordinates_at_nonweierstrass(Q,prec=5)
            sage: x
            -2 + t + O(t^5)
            sage: y
            12 - 19/2*t - 19/32*t^2 + 61/256*t^3 - 5965/24576*t^4 + O(t^5)

        AUTHOR:

            - Jennifer Balakrishnan (2007-12)
        """
        d = P[1]
        if d == 0:
            raise TypeError("P = %s is a Weierstrass point. Use local_coordinates_at_weierstrass instead!"%P)
        pol = self.hyperelliptic_polynomials()[0]
        L = PowerSeriesRing(self.base_ring(), name)
        t = L.gen()
        L.set_default_prec(prec)
        K = PowerSeriesRing(L, 'x')
        pol = K(pol)
        x = K.gen()
        b = P[0]
        f = pol(t+b)
        for i in range((RR(log(prec)/log(2))).ceil()):
            d = (d + f/d)/2
        return t+b+O(t**(prec)), d + O(t**(prec))
開發者ID:ProgVal,項目名稱:sage,代碼行數:53,代碼來源:hyperelliptic_generic.py

示例6: MFSeriesConstructor

class MFSeriesConstructor(SageObject,UniqueRepresentation):
    r"""
    Constructor for the Fourier expansion of some
    (specific, basic) modular forms.

    The constructor is used by forms elements in case
    their Fourier expansion is needed or requested.
    """

    @staticmethod
    def __classcall__(cls, group = HeckeTriangleGroup(3), prec=ZZ(10)):
        r"""
        Return a (cached) instance with canonical parameters.

        .. NOTE:

            For each choice of group and precision the constructor is
            cached (only) once. Further calculations with different
            base rings and possibly numerical parameters are based on
            the same cached instance.

        EXAMPLES::

            sage: from sage.modular.modform_hecketriangle.series_constructor import MFSeriesConstructor
            sage: MFSeriesConstructor() == MFSeriesConstructor(3, 10)
            True
            sage: MFSeriesConstructor(group=4).hecke_n()
            4
            sage: MFSeriesConstructor(group=5, prec=12).prec()
            12
        """

        if (group==infinity):
            group = HeckeTriangleGroup(infinity)
        else:
            try:
                group = HeckeTriangleGroup(ZZ(group))
            except TypeError:
                group = HeckeTriangleGroup(group.n())
        prec=ZZ(prec)
        # We don't need this assumption the precision may in principle also be negative.
        # if (prec<1):
        #     raise Exception("prec must be an Integer >=1")

        return super(MFSeriesConstructor,cls).__classcall__(cls, group, prec)

    def __init__(self, group, prec):
        r"""
        Constructor for the Fourier expansion of some
        (specific, basic) modular forms.

        INPUT:

        - ``group``      -- A Hecke triangle group (default: HeckeTriangleGroup(3)).

        - ``prec``       -- An integer (default: 10), the default precision used
                            in calculations in the LaurentSeriesRing or PowerSeriesRing.

        OUTPUT:

        The constructor for Fourier expansion with the specified settings.

        EXAMPLES::

            sage: from sage.modular.modform_hecketriangle.series_constructor import MFSeriesConstructor
            sage: MFC = MFSeriesConstructor()
            sage: MFC
            Power series constructor for Hecke modular forms for n=3 with (basic series) precision 10
            sage: MFC.group()
            Hecke triangle group for n = 3
            sage: MFC.prec()
            10
            sage: MFC._series_ring
            Power Series Ring in q over Rational Field

            sage: MFSeriesConstructor(group=4)
            Power series constructor for Hecke modular forms for n=4 with (basic series) precision 10
            sage: MFSeriesConstructor(group=5, prec=12)
            Power series constructor for Hecke modular forms for n=5 with (basic series) precision 12
            sage: MFSeriesConstructor(group=infinity)
            Power series constructor for Hecke modular forms for n=+Infinity with (basic series) precision 10
        """

        self._group          = group
        self._prec           = prec
        self._series_ring    = PowerSeriesRing(QQ,'q',default_prec=self._prec)

    def _repr_(self):
        r"""
        Return the string representation of ``self``.

        EXAMPLES::

            sage: from sage.modular.modform_hecketriangle.series_constructor import MFSeriesConstructor
            sage: MFSeriesConstructor(group=4)
            Power series constructor for Hecke modular forms for n=4 with (basic series) precision 10

            sage: MFSeriesConstructor(group=5, prec=12)
            Power series constructor for Hecke modular forms for n=5 with (basic series) precision 12
        """
#.........這裏部分代碼省略.........
開發者ID:BlairArchibald,項目名稱:sage,代碼行數:101,代碼來源:series_constructor.py

示例7: __init__

    def __init__(self, group, base_ring, prec, fix_d, set_d, d_num_prec):
        r"""
        Constructor for the Fourier expansion of some
        (specific, basic) modular forms.

        INPUT:

        - ``group``       - A Hecke triangle group (default: HeckeTriangleGroup(3)).

        - ``base_ring``   - The base ring (default: ZZ)

        - ``prec``        - An integer (default: 10), the default precision used
                            in calculations in the LaurentSeriesRing or PowerSeriesRing.

        - ``fix_d``       - ``True`` or ``False`` (default: ``False``).

                            If ``fix_d == False`` the base ring of the power series
                            is (the fraction field) of the polynomial ring over the base
                            ring in one formal parameter ``d``.

                            If ``fix_d == True`` the formal parameter ``d`` is replaced
                            by its numerical value with numerical precision at least ``d_num_prec``
                            (or exact in case n=3, 4, 6). The base ring of the PowerSeriesRing
                            or LaurentSeriesRing is changed to a common parent of
                            ``base_ring`` and the parent of the mentioned value ``d``.

        - ``set_d``       - A number which replaces the formal parameter ``d``.
                            The base ring of the PowerSeriesRing or LaurentSeriesRing is
                            changed to a common parent of ``base_ring``
                            and the parent of the specified value for ``d``.
                            Note that in particular ``set_d=1`` will produce
                            rational Fourier expansions.

        - ``d_num_prec``  - An integer, a lower bound for the precision of the
                            numerical value of ``d``.

        OUTPUT:

        The constructor for Fourier expansion with the specified settings.

        EXAMPLES::

            sage: MFC = MFSeriesConstructor()
            sage: MFC
            Power series constructor for Hecke modular forms for n=3, base ring=Integer Ring
            with (basic series) precision 10 with formal parameter d
            sage: MFC.group()
            Hecke triangle group for n = 3
            sage: MFC.prec()
            10
            sage: MFC.d().parent()
            Fraction Field of Univariate Polynomial Ring in d over Integer Ring
            sage: MFC._ZZseries_ring
            Power Series Ring in q over Rational Field

            sage: MFSeriesConstructor(set_d=CC(1))
            Power series constructor for Hecke modular forms for n=3, base ring=Complex Field with 53 bits of precision
            with (basic series) precision 10 with parameter d=1.00000000000000
            
            sage: MFSeriesConstructor(group=4, fix_d=True)
            Power series constructor for Hecke modular forms for n=4, base ring=Rational Field
            with (basic series) precision 10 with parameter d=1/256

            sage: MFSeriesConstructor(group=5, fix_d=True)
            Power series constructor for Hecke modular forms for n=5, base ring=Real Field with 53 bits of precision
            with (basic series) precision 10 with parameter d=0.00705223418128563
        """

        self._group          = group
        self._base_ring      = base_ring
        self._prec           = prec
        self._fix_d          = fix_d
        self._set_d          = set_d
        self._d_num_prec     = d_num_prec

        if (set_d):
            self._coeff_ring = FractionField(base_ring)
            self._d          = set_d
        else:
            self._coeff_ring = FractionField(PolynomialRing(base_ring,"d"))
            self._d          = self._coeff_ring.gen()

        self._ZZseries_ring  = PowerSeriesRing(QQ,'q',default_prec=self._prec)
        self._qseries_ring   = PowerSeriesRing(self._coeff_ring,'q',default_prec=self._prec)
開發者ID:jjermann,項目名稱:hecke_mf,代碼行數:84,代碼來源:series_constructor.py

示例8: MFSeriesConstructor

class MFSeriesConstructor(SageObject,UniqueRepresentation):
    r"""
    Constructor for the Fourier expansion of some
    (specific, basic) modular forms.

    The constructor is used by forms elements in case
    their Fourier expansion is needed or requested.
    """

    @staticmethod
    def __classcall__(cls, group = HeckeTriangleGroup(3), base_ring = ZZ, prec=ZZ(10), fix_d=False, set_d=None, d_num_prec=ZZ(53)):
        r"""
        Return a (cached) instance with canonical parameters.

        In particular in case ``fix_d = True`` or if ``set_d`` is
        set then the ``base_ring`` is replaced by the common parent
        of ``base_ring`` and the parent of ``set_d`` (resp. the
        numerical value of ``d`` in case ``fix_d=True``).

        EXAMPLES::

            sage: MFSeriesConstructor() == MFSeriesConstructor(3, ZZ, 10, False, None, 53)
            True
            sage: MFSeriesConstructor(base_ring = CC, set_d=CC(1)) == MFSeriesConstructor(set_d=CC(1))
            True
            sage: MFSeriesConstructor(group=4, fix_d=True).base_ring() == QQ
            True
            sage: MFSeriesConstructor(group=5, fix_d=True).base_ring() == RR
            True
        """

        if (group==infinity):
            group = HeckeTriangleGroup(infinity)
        else:
            try:
                group = HeckeTriangleGroup(ZZ(group))
            except TypeError:
                group = HeckeTriangleGroup(group.n())
        prec=ZZ(prec)
        #if (prec<1):
        #    raise Exception("prec must be an Integer >=1")

        fix_d = bool(fix_d)
        if (fix_d):
            n = group.n()
            d = group.dvalue()
            if (group.is_arithmetic()):
                d_num_prec = None
                set_d = 1/base_ring(1/d)
            else:
                d_num_prec = ZZ(d_num_prec)
                set_d = group.dvalue().n(d_num_prec)
        else:
            d_num_prec = None

        if (set_d is not None):
            base_ring=(base_ring(1)*set_d).parent()
        #elif (not base_ring.is_exact()):
        #    raise NotImplementedError

        return super(MFSeriesConstructor,cls).__classcall__(cls, group, base_ring, prec, fix_d, set_d, d_num_prec)

    def __init__(self, group, base_ring, prec, fix_d, set_d, d_num_prec):
        r"""
        Constructor for the Fourier expansion of some
        (specific, basic) modular forms.

        INPUT:

        - ``group``       - A Hecke triangle group (default: HeckeTriangleGroup(3)).

        - ``base_ring``   - The base ring (default: ZZ)

        - ``prec``        - An integer (default: 10), the default precision used
                            in calculations in the LaurentSeriesRing or PowerSeriesRing.

        - ``fix_d``       - ``True`` or ``False`` (default: ``False``).

                            If ``fix_d == False`` the base ring of the power series
                            is (the fraction field) of the polynomial ring over the base
                            ring in one formal parameter ``d``.

                            If ``fix_d == True`` the formal parameter ``d`` is replaced
                            by its numerical value with numerical precision at least ``d_num_prec``
                            (or exact in case n=3, 4, 6). The base ring of the PowerSeriesRing
                            or LaurentSeriesRing is changed to a common parent of
                            ``base_ring`` and the parent of the mentioned value ``d``.

        - ``set_d``       - A number which replaces the formal parameter ``d``.
                            The base ring of the PowerSeriesRing or LaurentSeriesRing is
                            changed to a common parent of ``base_ring``
                            and the parent of the specified value for ``d``.
                            Note that in particular ``set_d=1`` will produce
                            rational Fourier expansions.

        - ``d_num_prec``  - An integer, a lower bound for the precision of the
                            numerical value of ``d``.

        OUTPUT:

#.........這裏部分代碼省略.........
開發者ID:jjermann,項目名稱:hecke_mf,代碼行數:101,代碼來源:series_constructor.py

示例9: JFSeriesConstructor

class JFSeriesConstructor(SageObject,UniqueRepresentation):
    r"""
    Constructor for the Fourier expansion of some
    (specific, basic) modular forms.

    The constructor is used by forms elements in case
    their Fourier expansion is needed or requested.
    """

    @staticmethod
    def __classcall__(cls, group = HeckeTriangleGroup(3), prec=ZZ(10)):
        r"""
        Return a (cached) instance with canonical parameters.

        .. NOTE:

            For each choice of group and precision the constructor is
            cached (only) once. Further calculations with different
            base rings and possibly numerical parameters are based on
            the same cached instance.

        EXAMPLES::

            sage: from sage.modular.modform_hecketriangle.series_constructor import JFSeriesConstructor
            sage: JFSeriesConstructor() == JFSeriesConstructor(3, 10)
            True
            sage: JFSeriesConstructor(group=4).hecke_n()
            4
            sage: JFSeriesConstructor(group=5, prec=12).prec()
            12
        """

        if (group==infinity):
            group = HeckeTriangleGroup(infinity)
        else:
            try:
                group = HeckeTriangleGroup(ZZ(group))
            except TypeError:
                group = HeckeTriangleGroup(group.n())
        prec=ZZ(prec)
        # We don't need this assumption the precision may in principle also be negative.
        # if (prec<1):
        #     raise Exception("prec must be an Integer >=1")

        return super(JFSeriesConstructor,cls).__classcall__(cls, group, prec)

    def __init__(self, group, prec):
        r"""
        Constructor for the Fourier expansion of some
        (specific, basic) modular forms.

        INPUT:

        - ``group``      -- A Hecke triangle group (default: HeckeTriangleGroup(3)).

        - ``prec``       -- An integer (default: 10), the default precision used
                            in calculations in the LaurentSeriesRing or PowerSeriesRing.

        OUTPUT:

        The constructor for Fourier expansion with the specified settings.

        EXAMPLES::

            sage: from sage.modular.modform_hecketriangle.series_constructor import JFSeriesConstructor
            sage: JFC = JFSeriesConstructor()
            sage: JFC
            Power series constructor for Hecke modular forms for n=3 with (basic series) precision 10
            sage: JFC.group()
            Hecke triangle group for n = 3
            sage: JFC.prec()
            10
            sage: JFC._series_ring
            Power Series Ring in q over Rational Field

            sage: JFSeriesConstructor(group=4)
            Power series constructor for Hecke modular forms for n=4 with (basic series) precision 10
            sage: JFSeriesConstructor(group=5, prec=12)
            Power series constructor for Hecke modular forms for n=5 with (basic series) precision 12
            sage: JFSeriesConstructor(group=infinity)
            Power series constructor for Hecke modular forms for n=+Infinity with (basic series) precision 10
        """

        self._group          = group
        self._prec           = prec
        FR = FractionField(PolynomialRing(ZZ,'p,d'))
        self._series_ring    = PowerSeriesRing(FR,'q',default_prec=self._prec)
        #self._series_ring2   = PowerSeriesRing(QQ[['q']],'p',default_prec=self._prec)
        self._qseries_ring   = PowerSeriesRing(QQ,'q',default_prec=self._prec)

    def _repr_(self):
        r"""
        Return the string representation of ``self``.

        EXAMPLES::

            sage: from sage.modular.modform_hecketriangle.series_constructor import JFSeriesConstructor
            sage: JFSeriesConstructor(group=4)
            Power series constructor for Hecke modular forms for n=4 with (basic series) precision 10

#.........這裏部分代碼省略.........
開發者ID:jjermann,項目名稱:jacobi_forms,代碼行數:101,代碼來源:series_constructor.py

示例10: series

    def series(self, n=2, quadratic_twist=+1, prec=5):
        r"""
        Returns the `n`-th approximation to the `p`-adic L-series as a
        power series in `T` (corresponding to `\gamma-1` with
        `\gamma=1+p` as a generator of `1+p\ZZ_p`).  Each coefficient
        is a `p`-adic number whose precision is provably correct.
        
        Here the normalization of the `p`-adic L-series is chosen such
        that `L_p(J,1) = (1-1/\alpha)^2 L(J,1)/\Omega_J` where
        `\alpha` is the unit root

        INPUT:
        
            - ``n`` - (default: 2) a positive integer
            - ``quadratic_twist`` - (default: +1) a fundamental
              discriminant of a quadratic field, coprime to the
              conductor of the curve
            - ``prec`` - (default: 5) maximal number of terms of the
              series to compute; to compute as many as possible just
              give a very large number for ``prec``; the result will
              still be correct.

        ALIAS: power_series is identical to series.

        EXAMPLES:

	    sage: J = J0(188)[0]
	    sage: p = 7
	    sage: L = J.padic_lseries(p)
	    sage: L.is_ordinary()
	    True
	    sage: f = L.series(2)
	    sage: f[0]
	    O(7^20)
	    sage: f[1].norm()
	    3 + 4*7 + 3*7^2 + 6*7^3 + 5*7^4 + 5*7^5 + 6*7^6 + 4*7^7 + 5*7^8 + 7^10 + 5*7^11 + 4*7^13 + 4*7^14 + 5*7^15 + 2*7^16 + 5*7^17 + 7^18 + 7^19 + O(7^20)

        """
        n = ZZ(n)
        if n < 1:
            raise ValueError, "n (=%s) must be a positive integer"%n
        if not self.is_ordinary():
            raise ValueError, "p (=%s) must be an ordinary prime"%p
        # check if the conditions on quadratic_twist are satisfied
        D = ZZ(quadratic_twist)
        if D != 1:
            if D % 4 == 0:
                d = D//4
                if not d.is_squarefree() or d % 4 == 1:
                    raise ValueError, "quadratic_twist (=%s) must be a fundamental discriminant of a quadratic field"%D
            else:
                if not D.is_squarefree() or D % 4 != 1:
                    raise ValueError, "quadratic_twist (=%s) must be a fundamental discriminant of a quadratic field"%D
            if gcd(D,self._p) != 1:
                raise ValueError, "quadratic twist (=%s) must be coprime to p (=%s) "%(D,self._p)
            if gcd(D,self._E.conductor())!= 1:
                for ell in prime_divisors(D):
                    if valuation(self._E.conductor(),ell) > valuation(D,ell) :
                        raise ValueError, "can not twist a curve of conductor (=%s) by the quadratic twist (=%s)."%(self._E.conductor(),D)
                    
            
        p = self._p
        if p == 2 and self._normalize :
            print 'Warning : For p=2 the normalization might not be correct !'
        #verbose("computing L-series for p=%s, n=%s, and prec=%s"%(p,n,prec))
        
#        bounds = self._prec_bounds(n,prec)
#        padic_prec = max(bounds[1:]) + 5
        padic_prec = 10
#        verbose("using p-adic precision of %s"%padic_prec)
        
        res_series_prec = min(p**(n-1), prec)
        verbose("using series precision of %s"%res_series_prec)
        
        ans = self._get_series_from_cache(n, res_series_prec,D)
        if not ans is None:
            verbose("found series in cache")
            return ans
 
        K = QQ
        gamma = K(1 + p)
        R = PowerSeriesRing(K,'T',res_series_prec)
        T = R(R.gen(),res_series_prec )
        #L = R(0) 
        one_plus_T_factor = R(1) 
        gamma_power = K(1)
        teich = self.teichmuller(padic_prec)
        p_power = p**(n-1)
#        F = Qp(p,padic_prec)

        verbose("Now iterating over %s summands"%((p-1)*p_power))
        verbose_level = get_verbose()
        count_verb = 0
        alphas = self.alpha()
        #print len(alphas)
        Lprod = []
        self._emb = 0
        if len(alphas) == 2:
            split = True
        else:
#.........這裏部分代碼省略.........
開發者ID:Alwnikrotikz,項目名稱:purplesage,代碼行數:101,代碼來源:padic_lseries.py


注:本文中的sage.rings.all.PowerSeriesRing類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。