當前位置: 首頁>>代碼示例>>Python>>正文


Python free_module.VectorSpace類代碼示例

本文整理匯總了Python中sage.modules.free_module.VectorSpace的典型用法代碼示例。如果您正苦於以下問題:Python VectorSpace類的具體用法?Python VectorSpace怎麽用?Python VectorSpace使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了VectorSpace類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ProjectiveGeometryDesign

def ProjectiveGeometryDesign(n, d, F, algorithm=None):
    """
    Returns a projective geometry design.

    A projective geometry design of parameters `n,d,F` has for points the lines
    of `F^{n+1}`, and for blocks the `d+1`-dimensional subspaces of `F^{n+1}`,
    each of which contains `\\frac {|F|^{d+1}-1} {|F|-1}` lines.

    INPUT:

    - ``n`` is the projective dimension

    - ``d`` is the dimension of the subspaces of `P = PPn(F)` which
      make up the blocks.

    - ``F`` is a finite field.

    - ``algorithm`` -- set to ``None`` by default, which results in using Sage's
      own implementation. In order to use GAP's implementation instead (i.e. its
      ``PGPointFlatBlockDesign`` function) set ``algorithm="gap"``. Note that
      GAP's "design" package must be available in this case, and that it can be
      installed with the ``gap_packages`` spkg.

    EXAMPLES:

    The points of the following design are the `\\frac {2^{2+1}-1} {2-1}=7`
    lines of `\mathbb{Z}_2^{2+1}`. It has `7` blocks, corresponding to each
    2-dimensional subspace of `\mathbb{Z}_2^{2+1}`::

        sage: designs.ProjectiveGeometryDesign(2, 1, GF(2))
        Incidence structure with 7 points and 7 blocks
        sage: BD = designs.ProjectiveGeometryDesign(2, 1, GF(2), algorithm="gap") # optional - gap_packages (design package)
        sage: BD.is_block_design()                                     # optional - gap_packages (design package)
        (True, [2, 7, 3, 1])
    """
    q = F.order()
    from sage.interfaces.gap import gap, GapElement
    from sage.sets.set import Set
    if algorithm is None:
        V = VectorSpace(F, n+1)
        points = list(V.subspaces(1))
        flats = list(V.subspaces(d+1))
        blcks = []
        for p in points:
            b = []
            for i in range(len(flats)):
                if p.is_subspace(flats[i]):
                    b.append(i)
            blcks.append(b)
        v = (q**(n+1)-1)/(q-1)
        return BlockDesign(v, blcks, name="ProjectiveGeometryDesign")
    if algorithm == "gap":   # Requires GAP's Design
        gap.load_package("design")
        gap.eval("D := PGPointFlatBlockDesign( %s, %s, %d )"%(n,q,d))
        v = eval(gap.eval("D.v"))
        gblcks = eval(gap.eval("D.blocks"))
        gB = []
        for b in gblcks:
            gB.append([x-1 for x in b])
        return BlockDesign(v, gB, name="ProjectiveGeometryDesign")
開發者ID:amitjamadagni,項目名稱:sage,代碼行數:60,代碼來源:block_design.py

示例2: __init__

 def __init__(self, surface, label, point, ring = None, limit=None):
     self._s = surface
     if ring is None:
         self._ring = surface.base_ring()
     else:
         self._ring = ring
     p = surface.polygon(label)
     point = VectorSpace(self._ring,2)(point)
     point.set_immutable()
     pos = p.get_point_position(point)
     assert pos.is_inside(), \
         "Point must be positioned within the polygon with the given label."
     # This is the correct thing if point lies in the interior of the polygon with the given label.
     self._coordinate_dict = {label: {point}}
     if pos.is_in_edge_interior():
         label2,e2 = surface.opposite_edge(label, pos.get_edge())
         point2 = surface.edge_transformation(label, pos.get_edge())(point)
         point2.set_immutable()
         if label2 in self._coordinate_dict:
             self._coordinate_dict[label2].add(point2)
         else:
             self._coordinate_dict[label2]={point2}
     if pos.is_vertex():
         self._coordinate_dict = {}
         sing = surface.singularity(label, pos.get_vertex(), limit=limit)
         for l,v in sing.vertex_set():
             new_point = surface.polygon(l).vertex(v)
             new_point.set_immutable()
             if l in self._coordinate_dict:
                 self._coordinate_dict[l].add(new_point)
             else:
                 self._coordinate_dict[l] = {new_point}
     # Freeze the sets.
     for label,point_set in self._coordinate_dict.iteritems():
         self._coordinate_dict[label] = frozenset(point_set)
開發者ID:videlec,項目名稱:sage-flatsurf,代碼行數:35,代碼來源:surface_objects.py

示例3: nonisomorphic_cubes_Z2

def nonisomorphic_cubes_Z2(n, avoid_complete=False):
  """
  Returns a generator for all n-dimensional Cube-like graphs
  (Cayley graphs over Z_2^n) with their generators.
  With avoid_complete=True avoids the complete graph.
  Iterates over tuples (generatorSet, G).
  """
  vs = VectorSpace(GF(2), n)
  basegens = vs.gens()
  optgens = [v for v in vs if sum(map(int,v)) >= 2]
  total = 2**len(optgens)
  seen_graphs = set()
  c = 0
  for g in powerset(optgens):
    c += 1
    gens = tuple(list(basegens) + g)
    if c % (total / 100 + 1) == 0:
      log.debug("Generating (%d of %d)" % (c, total))
    if avoid_complete:
      if len(g) >= len(optgens):
        continue
    G = CayleyGraph(vs, gens)

    canon = tuple(Graph(G).canonical_label().edges())
    if canon in seen_graphs:
      continue
    log.debug("Unique graph (%d of %d) gens=%s" % (c, total, gens))
    seen_graphs.add(canon)

    yield (gens, G)
開發者ID:gavento,項目名稱:homsearch,代碼行數:30,代碼來源:cayley.py

示例4: _complex_relative

 def _complex_relative(self,n,*args):
   if len(args)==2:
     complex = []
     for i in range(args[0],args[1]):
       complex.append(self._complex_relative(n,i))
     return complex
   if n<0 or n>self.poly_ring.ngens():
     return []
   if n==0:
     hom_basis = self._p_graded_module(n).homogeneous_part_basis(self.degree+args[0])
     return [LogarithmicDifferentialForm(n,b,self) for b in hom_basis]
   base = self._p_graded_module(n).homogeneous_part_basis(self.degree+args[0])
   if len(base)==0:
     return []
   vs_base = VectorSpace(QQ,len(base))
   df_base = [LogarithmicDifferentialForm(n,b,self) for b in base]
   pre_base = self._p_graded_module(n-1).homogeneous_part_basis(self.degree+args[0])
   if len(pre_base)==0:
     return df_base
   dh = [self.divisor.derivative(g) for g in self.poly_ring.gens()]
   dh = LogarithmicDifferentialForm(1,dh,self)
   rel_gens = []
   for b in pre_base:
     b_form = LogarithmicDifferentialForm(n-1,b,self)
     w = dh.wedge(b_form)
     rel_gens.append(lift_to_basis([w],df_base))
   rel = vs_base.subspace(rel_gens)
   comp = orth_complement(vs_base,rel)
   #Lift
   rel_complex = []
   for vec in comp.basis():
     rel_complex.append(_weighted_sum(vec,df_base,self))
   return rel_complex
開發者ID:robertgoss,項目名稱:Logarithmic-differential-forms,代碼行數:33,代碼來源:logarithmic_forms.py

示例5: homology

 def homology(self,varient="complement",*args):
   hom = {}
   cc = self.chain_complex(varient,(-1,self.poly_ring.ngens()+1),*args)
   #Some need wider return range
   for i in range(self.poly_ring.ngens()+1):
     vs_am = VectorSpace(QQ,len(cc[i]))
     if len(cc[i])==0:
       hom[i] = []
       continue
     if len(cc[i-1])!=0:
       d_im = []
       for b in cc[i-1]:
         d_b = self.differential(b,varient,*args)
         d_im.append(lift_to_basis(d_b,cc[i]))
       img = vs_am.subspace(d_im)
     else:
       img = vs_am.subspace([vs_am.zero()])
     if len(cc[i+1])!=0:
       d_ker = []
       for b in cc[i]:
         d_b = self.differential(b,varient,*args)
         d_ker.append(lift_to_basis(d_b,cc[i+1]))
       ker = (matrix(QQ,d_ker)).left_kernel()
     else:
       ker = vs_am
     quo = ker.quotient(img)
     hom[i] = []
     for b in quo.basis():
       vec = quo.lift(b)
       part_sum = LogarithmicDifferentialForm.make_zero(i,self)
       for c,f in zip(vec,cc[i]):
         part_sum = part_sum + c*f
       hom[i].append(part_sum)
   return hom
開發者ID:robertgoss,項目名稱:Logarithmic-differential-forms,代碼行數:34,代碼來源:logarithmic_forms.py

示例6: test_satisfy_inter

 def test_satisfy_inter(self):
   v_space = VectorSpace(QQ,4)
   sub = v_space.subspace([[1,-1,1,1],[2,-3,4,5]])
   comp = orth_complement(v_space,sub)
   zero = v_space.subspace([v_space.zero()])
   inter = sub.intersection(comp)
   self.assertEqual(zero,inter)
開發者ID:robertgoss,項目名稱:Logarithmic-differential-forms,代碼行數:7,代碼來源:logarithmic_forms_test.py

示例7: ProjectiveGeometryDesign

def ProjectiveGeometryDesign(n, d, F, algorithm=None):
    """
    INPUT:

    - ``n`` is the projective dimension

    - ``v`` is the number of points `PPn(GF(q))`

    - ``d`` is the dimension of the subspaces of `P = PPn(GF(q))` which
      make up the blocks

    - ``b`` is the number of `d`-dimensional subspaces of `P`

    Wraps GAP Design's PGPointFlatBlockDesign. Does *not* require
    GAP's Design.

    EXAMPLES::

        sage: designs.ProjectiveGeometryDesign(2, 1, GF(2))
        Incidence structure with 7 points and 7 blocks
        sage: BD = designs.ProjectiveGeometryDesign(2, 1, GF(2), algorithm="gap") # optional - gap_packages (design package)
        sage: BD.is_block_design()                                     # optional - gap_packages (design package)
        (True, [2, 7, 3, 1])
    """
    q = F.order()
    from sage.interfaces.gap import gap, GapElement
    from sage.sets.set import Set
    if algorithm == None:
        V = VectorSpace(F, n+1)
        points = list(V.subspaces(1))
        flats = list(V.subspaces(d+1))
        blcks = []
        for p in points:
            b = []
            for i in range(len(flats)):
                if p.is_subspace(flats[i]):
                    b.append(i)
            blcks.append(b)
        v = (q**(n+1)-1)/(q-1)
        return BlockDesign(v, blcks, name="ProjectiveGeometryDesign")
    if algorithm == "gap":   # Requires GAP's Design
        gap.load_package("design")
        gap.eval("D := PGPointFlatBlockDesign( %s, %s, %d )"%(n,q,d))
        v = eval(gap.eval("D.v"))
        gblcks = eval(gap.eval("D.blocks"))
        gB = []
        for b in gblcks:
            gB.append([x-1 for x in b])
        return BlockDesign(v, gB, name="ProjectiveGeometryDesign")
開發者ID:felix-salfelder,項目名稱:sage,代碼行數:49,代碼來源:block_design.py

示例8: _differential_relative

 def _differential_relative(self,form,*args):
   n = form.degree
   deg = self._p_graded_module(n).total_degree(form.vec)
   deg -= self.degree
   der = form.derivative()
   full = self._p_graded_module(n+1).homogeneous_part_basis(self.degree+deg)
   full_forms = [LogarithmicDifferentialForm(n+1,b,self) for b in full]
   full_space = VectorSpace(QQ,len(full))
   target_comp = self._complex_relative(n+1,deg)
   comp_vecs = []
   for b in target_comp:
     comp_vecs.append(lift_to_basis([b],full_forms))
   comp_vecs = full_space.subspace(comp_vecs)
   lift_full = lift_to_basis([der],full_forms)
   lift_prog = comp_vecs.basis_matrix()*vector(lift_full)
   return [_weighted_sum(lift_prog,target_comp,self)]
開發者ID:robertgoss,項目名稱:Logarithmic-differential-forms,代碼行數:16,代碼來源:logarithmic_forms.py

示例9: __init__

 def __init__(self, base_field):
     self._f=base_field
     # The vector space of vectors 
     self._vs = VectorSpace(self._f,2)
     Group.__init__(self, category=Groups().Infinite())
開發者ID:fchapoton,項目名稱:sage-flatsurf,代碼行數:5,代碼來源:similarity.py

示例10: SimilarityGroup

class SimilarityGroup(UniqueRepresentation,Group):
    r'''Group representing all similarities in the plane.
    This is the group generated by rotations, translations and dilations.
    '''

    Element = Similarity

    def _element_constructor_(self, *args, **kwds):
        if len(args)!=1:
            return self.element_class(self, *args, **kwds)
        x = args[0]
        p=parent(x)
        if self._f.has_coerce_map_from(p):
            return self.element_class( self,self._f(x), self._f.zero(), self._f.zero(), self._f.zero())
        if isinstance(p, SimilarityGroup):
            return self.element_class(self, x.a(), x.b(), x.s(), x.t())
        if isinstance(p, TranslationGroup):
            return self.element_class( self,self._f.one(), self._f.zero(), x.s(), x.t() )
        return self.element_class(self, x, **kwds)

    def _coerce_map_from_(self, S):
        if self._f.has_coerce_map_from(S):
            return True
        if isinstance(S, SimilarityGroup):
            return self._f.has_coerce_map_from(S._f)
        if isinstance(S, TranslationGroup):
            return self._f.has_coerce_map_from(S.base_field())
           
    def __init__(self, base_field):
        self._f=base_field
        # The vector space of vectors 
        self._vs = VectorSpace(self._f,2)
        Group.__init__(self, category=Groups().Infinite())

    def _repr_(self):
        return "SimilarityGroup over field "+str(self._f)

    def one(self):
        return self.element_class(self,self._f.one(),self._f.zero(),self._f.zero(),self._f.zero())

    def an_element(self):
        return self.element_class(self,self._f(ZZ_3),self._f(ZZ_4),self._f(ZZ_2),self._f(-ZZ_1))

    def is_abelian(self):
        return False

    def gens(self):
        pairs=[
            (self._f.one(),self._f.zero()),
            (self._f(ZZ_2),self._f.zero()),
            (self._f.zero(),self._f(ZZ_2)),
            (self._f(ZZ_3),self._f(ZZ_4))]
        l=[]
        for p in pairs:
            for v in self._vs.gens():
                l.append(self.element_class(self,p[0],p[1],v[0],v[1]))
        return l
    
    # For pickling:
    #def __reduce__(self):
    #    return self.__class__, (self._f,)
        
    #def _cmp_(self, other):
    #    return self._f == other._f

    #__cmp__=_cmp_

    def base_field(self):
        return self._f
開發者ID:fchapoton,項目名稱:sage-flatsurf,代碼行數:69,代碼來源:similarity.py

示例11: linear_transformation


#.........這裏部分代碼省略.........
    A Sage symbolic function can come in a variety of forms that are
    not representative of a linear transformation. ::

        sage: x, y = var('x, y')
        sage: f(x, y) = [y, x, y]
        sage: linear_transformation(QQ^3, QQ^3, f)
        Traceback (most recent call last):
        ...
        ValueError: symbolic function has the wrong number of inputs for domain

        sage: linear_transformation(QQ^2, QQ^2, f)
        Traceback (most recent call last):
        ...
        ValueError: symbolic function has the wrong number of outputs for codomain

        sage: x, y = var('x y')
        sage: f(x, y) = [y, x*y]
        sage: linear_transformation(QQ^2, QQ^2, f)
        Traceback (most recent call last):
        ...
        ValueError: symbolic function must be linear in all the inputs:
        unable to convert y to a rational

        sage: x, y = var('x y')
        sage: f(x, y) = [x, 2*y]
        sage: C = (QQ^2).span([vector(QQ, [1, 1])])
        sage: linear_transformation(QQ^2, C, f)
        Traceback (most recent call last):
        ...
        ArithmeticError: some image of the function is not in the codomain, because
        element [1, 0] is not in free module
    """
    from sage.matrix.constructor import matrix
    from sage.modules.module import is_VectorSpace
    from sage.modules.free_module import VectorSpace
    from sage.categories.homset import Hom
    from sage.symbolic.ring import SymbolicRing
    from sage.modules.vector_callable_symbolic_dense import Vector_callable_symbolic_dense
    from inspect import isfunction

    if not side in ['left', 'right']:
        raise ValueError("side must be 'left' or 'right', not {0}".format(side))
    if not (is_Matrix(arg0) or is_VectorSpace(arg0)):
        raise TypeError('first argument must be a matrix or a vector space, not {0}'.format(arg0))
    if is_Matrix(arg0):
        R = arg0.base_ring()
        if not R.is_field():
            try:
                R = R.fraction_field()
            except (NotImplementedError, TypeError):
                msg = 'matrix must have entries from a field, or a ring with a fraction field, not {0}'
                raise TypeError(msg.format(R))
        if side == 'right':
            arg0 = arg0.transpose()
            side = 'left'
        arg2 = arg0
        arg0 = VectorSpace(R, arg2.nrows())
        arg1 = VectorSpace(R, arg2.ncols())
    elif is_VectorSpace(arg0):
        if not is_VectorSpace(arg1):
            msg = 'if first argument is a vector space, then second argument must be a vector space, not {0}'
            raise TypeError(msg.format(arg1))
        if arg0.base_ring() != arg1.base_ring():
            msg = 'vector spaces must have the same field of scalars, not {0} and {1}'
            raise TypeError(msg.format(arg0.base_ring(), arg1.base_ring()))
開發者ID:drupel,項目名稱:sage,代碼行數:66,代碼來源:vector_space_morphism.py

示例12: test_comp

 def test_comp(self):
   v_space = VectorSpace(QQ,4)
   sub = v_space.subspace([[1,1,1,1],[2,2,-3,-1]])
   comp = orth_complement(v_space,sub)
   true_comp = v_space.subspace([[19,-17,3,-5],[1,-1,0,0]])
   self.assertEqual(comp,true_comp)
開發者ID:robertgoss,項目名稱:Logarithmic-differential-forms,代碼行數:6,代碼來源:logarithmic_forms_test.py

示例13: mcfarland_1973_construction

def mcfarland_1973_construction(q, s):
    r"""
    Return a difference set.

    The difference set returned has the following parameters

    .. MATH::

        v = \frac{q^{s+1}(q^{s+1}+q-2)}{q-1},
        k = \frac{q^s (q^{s+1}-1)}{q-1},
        \lambda = \frac{q^s(q^s-1)}{q-1}

    This construction is due to [McF1973]_.

    INPUT:

    - ``q``, ``s`` - (integers) parameters for the difference set (see the above
      formulas for the expression of ``v``, ``k``, ``l`` in terms of ``q`` and
      ``s``)

    .. SEEALSO::

        The function :func:`are_mcfarland_1973_parameters` makes the translation
        between the parameters `(q,s)` corresponding to a given triple
        `(v,k,\lambda)`.

    REFERENCES:

    .. [McF1973] Robert L. McFarland
       "A family of difference sets in non-cyclic groups"
       Journal of Combinatorial Theory (A) vol 15 (1973).
       http://dx.doi.org/10.1016/0097-3165(73)90031-9

    EXAMPLES::

        sage: from sage.combinat.designs.difference_family import (
        ....:    mcfarland_1973_construction, is_difference_family)

        sage: G,D = mcfarland_1973_construction(3, 1)
        sage: assert is_difference_family(G, D, 45, 12, 3)

        sage: G,D = mcfarland_1973_construction(2, 2)
        sage: assert is_difference_family(G, D, 64, 28, 12)
    """
    from sage.rings.finite_rings.finite_field_constructor import GF
    from sage.modules.free_module import VectorSpace
    from sage.rings.finite_rings.integer_mod_ring import Zmod
    from sage.categories.cartesian_product import cartesian_product
    from itertools import izip

    r = (q**(s+1)-1) // (q-1)
    F = GF(q,'a')
    V = VectorSpace(F, s+1)
    K = Zmod(r+1)

    G = cartesian_product([F]*(s+1) + [K])

    D = []
    for k,H in izip(K, V.subspaces(s)):
        for v in H:
            D.append(G((tuple(v) + (k,))))

    return G,[D]
開發者ID:Babyll,項目名稱:sage,代碼行數:63,代碼來源:difference_family.py

示例14: test_satisfy_sum

 def test_satisfy_sum(self):
   v_space = VectorSpace(QQ,4)
   sub = v_space.subspace([[1,1,1,-1],[2,-3,41,5]])
   comp = orth_complement(v_space,sub)
   self.assertEqual(v_space,sub+comp)
開發者ID:robertgoss,項目名稱:Logarithmic-differential-forms,代碼行數:5,代碼來源:logarithmic_forms_test.py

示例15: algebraic_topological_model


#.........這裏部分代碼省略.........
    # vector}, where idx is the index of an n-cell in the list of
    # n-cells in K, and vector is the image of that n-cell, as an
    # element in the free module of (n+1)-chains for K.
    phi_dict = {}
    # For each n, pi_dict[n] is a dictionary of the same form, except
    # that the target vectors should be elements of the chain complex M.
    pi_dict = {}
    # For each n, iota_dict[n] is a dictionary of the form {cell:
    # vector}, where cell is one of the generators for M and vector is
    # its image in C, as an element in the free module of n-chains.
    iota_dict = {}

    for n in range(K.dimension()+1):
        gens[n] = []
        phi_dict[n] = {}
        pi_dict[n] = {}
        iota_dict[n] = {}

    C = K.chain_complex(base_ring=base_ring)
    # old_cells: cells one dimension lower.
    old_cells = []

    for dim in range(K.dimension()+1):
        n_cells = K.n_cells(dim)
        diff = C.differential(dim)
        # diff is sparse and low density. Dense matrices are faster
        # over finite fields, but for low density matrices, sparse
        # matrices are faster over the rationals.
        if base_ring != QQ:
            diff = diff.dense_matrix()

        rank = len(n_cells)
        old_rank = len(old_cells)
        V_old = VectorSpace(base_ring, old_rank)
        zero = V_old.zero_vector()

        for c_idx, c in enumerate(zip(n_cells, VectorSpace(base_ring, rank).gens())):
            # c is the pair (cell, the corresponding standard basis
            # vector in the free module of chains). Separate its
            # components, calling them c and c_vec:
            c_vec = c[1]
            c = c[0]
            # No need to set zero values for any of the maps: we will
            # assume any unset values are zero.
            # From the paper: phi_dict[c] = 0.

            # c_bar = c - phi(bdry(c))
            c_bar = c_vec
            bdry_c = diff * c_vec
            # Apply phi to bdry_c and subtract from c_bar.
            for (idx, coord) in bdry_c.iteritems():
                try:
                    c_bar -= coord * phi_dict[dim-1][idx]
                except KeyError:
                    pass

            bdry_c_bar = diff * c_bar

            # Evaluate pi(bdry(c_bar)).
            pi_bdry_c_bar = zero

            for (idx, coeff) in bdry_c_bar.iteritems():
                try:
                    pi_bdry_c_bar += coeff * pi_dict[dim-1][idx]
                except KeyError:
                    pass
開發者ID:Babyll,項目名稱:sage,代碼行數:67,代碼來源:algebraic_topological_model.py


注:本文中的sage.modules.free_module.VectorSpace類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。