本文整理匯總了Python中sage.matrix.matrix_space.MatrixSpace.random_element方法的典型用法代碼示例。如果您正苦於以下問題:Python MatrixSpace.random_element方法的具體用法?Python MatrixSpace.random_element怎麽用?Python MatrixSpace.random_element使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sage.matrix.matrix_space.MatrixSpace
的用法示例。
在下文中一共展示了MatrixSpace.random_element方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: RandomLinearCode
# 需要導入模塊: from sage.matrix.matrix_space import MatrixSpace [as 別名]
# 或者: from sage.matrix.matrix_space.MatrixSpace import random_element [as 別名]
def RandomLinearCode(n,k,F):
r"""
The method used is to first construct a `k \times n`
matrix using Sage's random_element method for the MatrixSpace
class. The construction is probabilistic but should only fail
extremely rarely.
INPUT: Integers n,k, with `n>k`, and a finite field F
OUTPUT: Returns a "random" linear code with length n, dimension k
over field F.
EXAMPLES::
sage: C = codes.RandomLinearCode(30,15,GF(2))
sage: C
Linear code of length 30, dimension 15 over Finite Field of size 2
sage: C = codes.RandomLinearCode(10,5,GF(4,'a'))
sage: C
Linear code of length 10, dimension 5 over Finite Field in a of size 2^2
AUTHORS:
- David Joyner (2007-05)
"""
MS = MatrixSpace(F,k,n)
for i in range(50):
G = MS.random_element()
if G.rank() == k:
V = span(G.rows(), F)
return LinearCodeFromVectorSpace(V) # may not be in standard form
MS1 = MatrixSpace(F,k,k)
MS2 = MatrixSpace(F,k,n-k)
Ik = MS1.identity_matrix()
A = MS2.random_element()
G = Ik.augment(A)
return LinearCode(G) # in standard form
示例2: gen_lattice
# 需要導入模塊: from sage.matrix.matrix_space import MatrixSpace [as 別名]
# 或者: from sage.matrix.matrix_space.MatrixSpace import random_element [as 別名]
#.........這裏部分代碼省略.........
.. [A96] Miklos Ajtai.
Generating hard instances of lattice problems (extended abstract).
STOC, pp. 99--108, ACM, 1996.
.. [GM02] Daniel Goldstein and Andrew Mayer.
On the equidistribution of Hecke points.
Forum Mathematicum, 15:2, pp. 165--189, De Gruyter, 2003.
.. [LM06] Vadim Lyubashevsky and Daniele Micciancio.
Generalized compact knapsacks are collision resistant.
ICALP, pp. 144--155, Springer, 2006.
.. [R05] Oded Regev.
On lattices, learning with errors, random linear codes, and cryptography.
STOC, pp. 84--93, ACM, 2005.
"""
from sage.rings.finite_rings.integer_mod_ring import IntegerModRing
from sage.matrix.constructor import identity_matrix, block_matrix
from sage.matrix.matrix_space import MatrixSpace
from sage.rings.integer_ring import IntegerRing
if seed is not None:
from sage.misc.randstate import set_random_seed
set_random_seed(seed)
if type == 'random':
if n != 1: raise ValueError('random bases require n = 1')
ZZ = IntegerRing()
ZZ_q = IntegerModRing(q)
A = identity_matrix(ZZ_q, n)
if type == 'random' or type == 'modular':
R = MatrixSpace(ZZ_q, m-n, n)
A = A.stack(R.random_element())
elif type == 'ideal':
if quotient is None:
raise ValueError('ideal bases require a quotient polynomial')
try:
quotient = quotient.change_ring(ZZ_q)
except (AttributeError, TypeError):
quotient = quotient.polynomial(base_ring=ZZ_q)
P = quotient.parent()
# P should be a univariate polynomial ring over ZZ_q
if not is_PolynomialRing(P):
raise TypeError("quotient should be a univariate polynomial")
assert P.base_ring() is ZZ_q
if quotient.degree() != n:
raise ValueError('ideal basis requires n = quotient.degree()')
R = P.quotient(quotient)
for i in range(m//n):
A = A.stack(R.random_element().matrix())
elif type == 'cyclotomic':
from sage.arith.all import euler_phi
from sage.misc.functional import cyclotomic_polynomial
# we assume that n+1 <= min( euler_phi^{-1}(n) ) <= 2*n
found = False
for k in range(2*n,n,-1):
if euler_phi(k) == n:
found = True
break
if not found:
raise ValueError("cyclotomic bases require that n "
"is an image of Euler's totient function")
R = ZZ_q['x'].quotient(cyclotomic_polynomial(k, 'x'), 'x')
for i in range(m//n):
A = A.stack(R.random_element().matrix())
# switch from representatives 0,...,(q-1) to (1-q)/2,....,(q-1)/2
def minrep(a):
if abs(a-q) < abs(a): return a-q
else: return a
A_prime = A[n:m].lift().apply_map(minrep)
if not dual:
B = block_matrix([[ZZ(q), ZZ.zero()], [A_prime, ZZ.one()] ],
subdivide=False)
else:
B = block_matrix([[ZZ.one(), -A_prime.transpose()],
[ZZ.zero(), ZZ(q)]], subdivide=False)
for i in range(m//2):
B.swap_rows(i,m-i-1)
if ntl and lattice:
raise ValueError("Cannot specify ntl=True and lattice=True "
"at the same time")
if ntl:
return B._ntl_()
elif lattice:
from sage.modules.free_module_integer import IntegerLattice
return IntegerLattice(B)
else:
return B
示例3: gen_lattice
# 需要導入模塊: from sage.matrix.matrix_space import MatrixSpace [as 別名]
# 或者: from sage.matrix.matrix_space.MatrixSpace import random_element [as 別名]
#.........這裏部分代碼省略.........
[ 0 0 0 0 0 11 0 0 0 0]
[ 0 0 0 0 11 0 0 0 0 0]
[ 0 0 0 1 -5 -2 -1 1 -3 5]
[ 0 0 1 0 -3 4 1 4 -3 -2]
[ 0 1 0 0 -4 5 -3 3 5 3]
[ 1 0 0 0 -2 -1 4 2 5 4]
* Relation of primal and dual bases ::
sage: B_primal=sage.crypto.gen_lattice(m=10, q=11, seed=42)
sage: B_dual=sage.crypto.gen_lattice(m=10, q=11, seed=42, dual=True)
sage: B_dual_alt=transpose(11*B_primal.inverse()).change_ring(ZZ)
sage: B_dual_alt.hermite_form() == B_dual.hermite_form()
True
REFERENCES:
.. [A96] Miklos Ajtai.
Generating hard instances of lattice problems (extended abstract).
STOC, pp. 99--108, ACM, 1996.
.. [GM02] Daniel Goldstein and Andrew Mayer.
On the equidistribution of Hecke points.
Forum Mathematicum, 15:2, pp. 165--189, De Gruyter, 2003.
.. [LM06] Vadim Lyubashevsky and Daniele Micciancio.
Generalized compact knapsacks are collision resistant.
ICALP, pp. 144--155, Springer, 2006.
.. [R05] Oded Regev.
On lattices, learning with errors, random linear codes, and cryptography.
STOC, pp. 84--93, ACM, 2005.
"""
from sage.rings.finite_rings.integer_mod_ring \
import IntegerModRing
from sage.matrix.constructor import matrix, \
identity_matrix, block_matrix
from sage.matrix.matrix_space import MatrixSpace
from sage.rings.integer_ring import IntegerRing
if seed != None:
from sage.misc.randstate import set_random_seed
set_random_seed(seed)
if type == 'random':
if n != 1: raise ValueError('random bases require n = 1')
ZZ = IntegerRing()
ZZ_q = IntegerModRing(q)
A = identity_matrix(ZZ_q, n)
if type == 'random' or type == 'modular':
R = MatrixSpace(ZZ_q, m-n, n)
A = A.stack(R.random_element())
elif type == 'ideal':
if quotient == None: raise \
ValueError('ideal bases require a quotient polynomial')
x = quotient.default_variable()
if n != quotient.degree(x): raise \
ValueError('ideal bases require n = quotient.degree()')
R = ZZ_q[x].quotient(quotient, x)
for i in range(m//n):
A = A.stack(R.random_element().matrix())
elif type == 'cyclotomic':
from sage.rings.arith import euler_phi
from sage.misc.functional import cyclotomic_polynomial
# we assume that n+1 <= min( euler_phi^{-1}(n) ) <= 2*n
found = False
for k in range(2*n,n,-1):
if euler_phi(k) == n:
found = True
break
if not found: raise \
ValueError('cyclotomic bases require that n is an image of' + \
'Euler\'s totient function')
R = ZZ_q['x'].quotient(cyclotomic_polynomial(k, 'x'), 'x')
for i in range(m//n):
A = A.stack(R.random_element().matrix())
# switch from representatives 0,...,(q-1) to (1-q)/2,....,(q-1)/2
def minrep(a):
if abs(a-q) < abs(a): return a-q
else: return a
A_prime = A[n:m].lift().apply_map(minrep)
if not dual:
B = block_matrix([[ZZ(q), ZZ.zero()], [A_prime, ZZ.one()] ], \
subdivide=False)
else:
B = block_matrix([[ZZ.one(), -A_prime.transpose()], [ZZ.zero(), \
ZZ(q)]], subdivide=False)
for i in range(m//2): B.swap_rows(i,m-i-1)
if not ntl:
return B
else:
return B._ntl_()