本文整理匯總了Python中sage.combinat.root_system.root_system.RootSystem類的典型用法代碼示例。如果您正苦於以下問題:Python RootSystem類的具體用法?Python RootSystem怎麽用?Python RootSystem使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了RootSystem類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _product_coroot_root
def _product_coroot_root(self, i, j):
r"""
Return the product `\alpha^{\vee}_i \alpha_j`.
EXAMPLES::
sage: k = QQ['c,t']
sage: R = algebras.RationalCherednik(['A',3], k.gen(0), k.gen(1))
sage: R._product_coroot_root(1, 1)
((1, 2*t), (s1*s2*s3*s2*s1, 1/2*c), (s2*s3*s2, 1/2*c),
(s1*s2*s1, 1/2*c), (s1, 2*c), (s3, 0), (s2, 1/2*c))
sage: R._product_coroot_root(1, 2)
((1, -t), (s1*s2*s3*s2*s1, 0), (s2*s3*s2, -1/2*c),
(s1*s2*s1, 1/2*c), (s1, -c), (s3, 0), (s2, -c))
sage: R._product_coroot_root(1, 3)
((1, 0), (s1*s2*s3*s2*s1, 1/2*c), (s2*s3*s2, -1/2*c),
(s1*s2*s1, -1/2*c), (s1, 0), (s3, 0), (s2, 1/2*c))
"""
Q = RootSystem(self._cartan_type).root_lattice()
ac = Q.simple_coroot(i)
al = Q.simple_root(j)
R = self.base_ring()
terms = [( self._weyl.one(), self._t * R(ac.scalar(al)) )]
for s in self._reflections:
# p[0] is the root, p[1] is the coroot, p[2] the value c_s
pr, pc, c = self._reflections[s]
terms.append(( s, c * R(ac.scalar(pr) * pc.scalar(al)
/ pc.scalar(pr)) ))
return tuple(terms)
示例2: weight_in_root_lattice
def weight_in_root_lattice(self):
r"""
Return the weight of ``self`` as an element of the root lattice.
EXAMPLES::
sage: M = crystals.infinity.NakajimaMonomials(['F',4])
sage: m = M.module_generators[0].f_string([3,3,1,2,4])
sage: m.weight_in_root_lattice()
-alpha[1] - alpha[2] - 2*alpha[3] - alpha[4]
sage: M = crystals.infinity.NakajimaMonomials(['B',3,1])
sage: mg = M.module_generators[0]
sage: m = mg.f_string([1,3,2,0,1,2,3,0,0,1])
sage: m.weight_in_root_lattice()
-3*alpha[0] - 3*alpha[1] - 2*alpha[2] - 2*alpha[3]
sage: M = crystals.infinity.NakajimaMonomials(['C',3,1])
sage: m = M.module_generators[0].f_string([3,0,1,2,0])
sage: m.weight_in_root_lattice()
-2*alpha[0] - alpha[1] - alpha[2] - alpha[3]
"""
Q = RootSystem(self.parent().cartan_type()).root_lattice()
al = Q.simple_roots()
return Q.sum(e*al[k[0]] for k,e in six.iteritems(self._A))
示例3: __classcall_private__
def __classcall_private__(cls, starting_weight, cartan_type = None, starting_weight_parent = None):
"""
Classcall to mend the input.
Internally, the
:class:`~sage.combinat.crystals.littlemann_path.CrystalOfLSPaths` code
works with a ``starting_weight`` that is in the weight space associated
to the crystal. The user can, however, also input a ``cartan_type``
and the coefficients of the fundamental weights as
``starting_weight``. This code transforms the input into the right
format (also necessary for UniqueRepresentation).
TESTS::
sage: crystals.LSPaths(['A',2,1],[-1,0,1])
The crystal of LS paths of type ['A', 2, 1] and weight -Lambda[0] + Lambda[2]
sage: R = RootSystem(['B',2,1])
sage: La = R.weight_space(extended=True).basis()
sage: C = crystals.LSPaths(['B',2,1],[0,0,1])
sage: B = crystals.LSPaths(La[2])
sage: B is C
True
"""
if cartan_type is not None:
cartan_type, starting_weight = CartanType(starting_weight), cartan_type
if cartan_type.is_affine():
extended = True
else:
extended = False
R = RootSystem(cartan_type)
P = R.weight_space(extended = extended)
Lambda = P.basis()
offset = R.index_set()[Integer(0)]
starting_weight = P.sum(starting_weight[j-offset]*Lambda[j] for j in R.index_set())
if starting_weight_parent is None:
starting_weight_parent = starting_weight.parent()
else:
# Both the weight and the parent of the weight are passed as arguments of init to be able
# to distinguish between crystals with the extended and non-extended weight lattice!
if starting_weight.parent() != starting_weight_parent:
raise ValueError("The passed parent is not equal to parent of the inputted weight!")
return super(CrystalOfLSPaths, cls).__classcall__(cls, starting_weight, starting_weight_parent = starting_weight_parent)
示例4: maximal_elements
def maximal_elements(self):
r"""
Return the maximal elements of ``self`` with respect to Bruhat order.
The current implementation is via a conjectural type-free
formula. Use maximal_elements_combinatorial() for proven
type-specific implementations. To compare type-free and
type-specific (combinatorial) implementations, use method
:meth:`_test_maximal_elements`.
EXAMPLES::
sage: W = WeylGroup(['A',4,1])
sage: PF = W.pieri_factors()
sage: sorted([w.reduced_word() for w in PF.maximal_elements()], key=str)
[[0, 4, 3, 2], [1, 0, 4, 3], [2, 1, 0, 4], [3, 2, 1, 0], [4, 3, 2, 1]]
sage: W = WeylGroup(RootSystem(["C",3,1]).weight_space())
sage: PF = W.pieri_factors()
sage: sorted([w.reduced_word() for w in PF.maximal_elements()], key=str)
[[0, 1, 2, 3, 2, 1], [1, 0, 1, 2, 3, 2], [1, 2, 3, 2, 1, 0],
[2, 1, 0, 1, 2, 3], [2, 3, 2, 1, 0, 1], [3, 2, 1, 0, 1, 2]]
sage: W = WeylGroup(RootSystem(["B",3,1]).weight_space())
sage: PF = W.pieri_factors()
sage: sorted([w.reduced_word() for w in PF.maximal_elements()], key=str)
[[0, 2, 3, 2, 0], [1, 0, 2, 3, 2], [1, 2, 3, 2, 1],
[2, 1, 0, 2, 3], [2, 3, 2, 1, 0], [3, 2, 1, 0, 2]]
sage: W = WeylGroup(['D',4,1])
sage: PF = W.pieri_factors()
sage: sorted([w.reduced_word() for w in PF.maximal_elements()], key=str)
[[0, 2, 4, 3, 2, 0], [1, 0, 2, 4, 3, 2], [1, 2, 4, 3, 2, 1],
[2, 1, 0, 2, 4, 3], [2, 4, 3, 2, 1, 0], [3, 2, 1, 0, 2, 3],
[4, 2, 1, 0, 2, 4], [4, 3, 2, 1, 0, 2]]
"""
ct = self.W.cartan_type()
s = ct.translation_factors()[1]
R = RootSystem(ct).weight_space()
Lambda = R.fundamental_weights()
orbit = [R.reduced_word_of_translation(x)
for x in (s*(Lambda[1]-Lambda[1].level()*Lambda[0]))._orbit_iter()]
return [self.W.from_reduced_word(x) for x in orbit]
示例5: weight_in_root_lattice
def weight_in_root_lattice(self):
r"""
Return the weight of ``self`` as an element of the root lattice.
EXAMPLES::
sage: M = crystals.infinity.NakajimaMonomials(['F',4])
sage: m = M.module_generators[0].f_string([3,3,1,2,4])
sage: m.weight_in_root_lattice()
-alpha[1] - alpha[2] - 2*alpha[3] - alpha[4]
sage: M = crystals.infinity.NakajimaMonomials(['B',3,1])
sage: mg = M.module_generators[0]
sage: m = mg.f_string([1,3,2,0,1,2,3,0,0,1])
sage: m.weight_in_root_lattice()
-3*alpha[0] - 3*alpha[1] - 2*alpha[2] - 2*alpha[3]
"""
Q = RootSystem(self.parent().cartan_type()).root_lattice()
alpha = Q.simple_roots()
path = self.to_highest_weight()
return Q(sum(-alpha[j] for j in path[1]))
示例6: __classcall_private__
def __classcall_private__(cls, crystals, weight):
"""
Normalize input to ensure a unique representation.
EXAMPLES::
sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1)
sage: L = RootSystem(['A',2,1]).weight_lattice()
sage: C = crystals.KyotoPathModel(B, L.fundamental_weight(0))
sage: C2 = crystals.KyotoPathModel((B,), L.fundamental_weight(0))
sage: C3 = crystals.KyotoPathModel([B], L.fundamental_weight(0))
sage: C is C2 and C2 is C3
True
sage: L = RootSystem(['A',2,1]).weight_space()
sage: C = KyotoPathModel(B, L.fundamental_weight(0))
Traceback (most recent call last):
...
ValueError: Lambda[0] is not in the weight lattice
"""
if isinstance(crystals, list):
crystals = tuple(crystals)
elif not isinstance(crystals, tuple):
crystals = (crystals,)
if any(not B.is_perfect() for B in crystals):
raise ValueError("all crystals must be perfect")
level = crystals[0].level()
if any(B.level() != level for B in crystals[1:]):
raise ValueError("all crystals must have the same level")
ct = crystals[0].cartan_type()
P = RootSystem(ct).weight_lattice()
if weight.parent() is not P:
raise ValueError("{} is not in the weight lattice".format(weight))
if sum( ct.dual().c()[i] * weight.scalar(h) for i,h in
enumerate(P.simple_coroots()) ) != level:
raise ValueError( "{} is not a level {} weight".format(weight, level) )
return super(KyotoPathModel, cls).__classcall__(cls, crystals, weight)
示例7: __classcall_private__
def __classcall_private__(cls, starting_weight, cartan_type = None):
"""
Classcall to mend the input.
Internally, the CrystalOfLSPaths code works with a ``starting_weight`` that
is in the ``weight_space`` associated to the crystal. The user can, however,
also input a ``cartan_type`` and the coefficients of the fundamental weights
as ``starting_weight``. This code transforms the input into the right
format (also necessary for UniqueRepresentation).
TESTS::
sage: CrystalOfLSPaths(['A',2,1],[-1,0,1])
The crystal of LS paths of type ['A', 2, 1] and weight -Lambda[0] + Lambda[2]
sage: R = RootSystem(['B',2,1])
sage: La = R.weight_space().basis()
sage: C = CrystalOfLSPaths(['B',2,1],[0,0,1])
sage: B = CrystalOfLSPaths(La[2])
sage: B is C
True
"""
if cartan_type is not None:
cartan_type, starting_weight = CartanType(starting_weight), cartan_type
if cartan_type.is_affine():
extended = True
else:
extended = False
R = RootSystem(cartan_type)
P = R.weight_space(extended = extended)
Lambda = P.basis()
offset = R.index_set()[Integer(0)]
starting_weight = P.sum(starting_weight[j-offset]*Lambda[j] for j in R.index_set())
return super(CrystalOfLSPaths, cls).__classcall__(cls, starting_weight)
示例8: __init__
def __init__(self, cartan_type, starting_weight):
"""
EXAMPLES::
sage: C = CrystalOfLSPaths(['A',2,1],[-1,0,1]); C
The crystal of LS paths of type ['A', 2, 1] and weight (-1, 0, 1)
sage: C.R
Root system of type ['A', 2, 1]
sage: C.weight
-Lambda[0] + Lambda[2]
sage: C.weight.parent()
Extended weight space over the Rational Field of the Root system of type ['A', 2, 1]
sage: C.module_generators
[(-Lambda[0] + Lambda[2],)]
"""
self._cartan_type = CartanType(cartan_type)
self.R = RootSystem(cartan_type)
self._name = "The crystal of LS paths of type %s and weight %s"%(cartan_type,starting_weight)
if self._cartan_type.is_affine():
self.extended = True
if all(i>=0 for i in starting_weight):
Parent.__init__(self, category = HighestWeightCrystals())
else:
Parent.__init__(self, category = Crystals())
else:
self.extended = False
Parent.__init__(self, category = FiniteCrystals())
Lambda = self.R.weight_space(extended = self.extended).basis()
offset = self.R.index_set()[Integer(0)]
zero_weight = self.R.weight_space(extended = self.extended).zero()
self.weight = sum([zero_weight]+[starting_weight[j-offset]*Lambda[j] for j in self.R.index_set()])
if self.weight == zero_weight:
initial_element = self(tuple([]))
else:
initial_element = self(tuple([self.weight]))
self.module_generators = [initial_element]
示例9: __init__
def __init__(self, cartan_type, highest_weight):
"""
EXAMPLES::
sage: C = ClassicalCrystalOfAlcovePaths(['A',3],[1,0,0])
sage: C.list()
[[], [0], [0, 1], [0, 1, 2]]
sage: TestSuite(C).run()
"""
Parent.__init__(self, category = ClassicalCrystals())
self._cartan_type = CartanType(cartan_type)
self._name = "The crystal of alcove paths for type %s"%cartan_type
self.chain_cache = {}
self.endweight_cache = {}
self.R = RootSystem(cartan_type)
alpha = self.R.root_space().simple_roots()
Lambda = self.R.weight_space().basis()
self.positive_roots = sorted(self.R.root_space().positive_roots());
self.weight = Lambda[Integer(1)] - Lambda[Integer(1)]
offset = self.R.index_set()[Integer(0)]
for j in self.R.index_set():
self.weight = self.weight + highest_weight[j-offset]*Lambda[j]
self.initial_element = self([])
self.initial_element.chain = self.get_initial_chain(self.weight)
rho = (Integer(1)/Integer(2))*sum(self.positive_roots)
self.initial_element.endweight = rho
self.chain_cache[ str([]) ] = self.initial_element.chain
self.endweight_cache[ str([]) ] = self.initial_element.endweight
self.module_generators = [self.initial_element]
self._list = super(ClassicalCrystalOfAlcovePaths, self).list()
self._digraph = super(ClassicalCrystalOfAlcovePaths, self).digraph()
self._digraph_closure = self.digraph().transitive_closure()
示例10: __init__
def __init__(self, ct, c, t, base_ring, prefix):
r"""
Initialize ``self``.
EXAMPLES::
sage: k = QQ['c,t']
sage: R = algebras.RationalCherednik(['A',2], k.gen(0), k.gen(1))
sage: TestSuite(R).run() # long time
"""
self._c = c
self._t = t
self._cartan_type = ct
self._weyl = RootSystem(ct).root_lattice().weyl_group(prefix=prefix[1])
self._hd = IndexedFreeAbelianMonoid(ct.index_set(), prefix=prefix[0],
bracket=False)
self._h = IndexedFreeAbelianMonoid(ct.index_set(), prefix=prefix[2],
bracket=False)
indices = DisjointUnionEnumeratedSets([self._hd, self._weyl, self._h])
CombinatorialFreeModule.__init__(self, base_ring, indices,
category=Algebras(base_ring).WithBasis().Graded(),
sorting_key=self._genkey)
示例11: CrystalOfLSPaths
class CrystalOfLSPaths(UniqueRepresentation, Parent):
r"""
Crystal graph of LS paths generated from the straight-line path to a given weight.
INPUT:
- ``cartan_type`` -- the Cartan type of a finite or affine root system
- ``starting_weight`` -- a weight given as a list of coefficients of the fundamental weights
The crystal class of piecewise linear paths in the weight space,
generated from a straight-line path from the origin to a given
element of the weight lattice.
OUTPUT: - a tuple of weights defining the directions of the piecewise linear segments
EXAMPLES::
sage: C = CrystalOfLSPaths(['A',2,1],[-1,0,1]); C
The crystal of LS paths of type ['A', 2, 1] and weight (-1, 0, 1)
sage: c = C.module_generators[0]; c
(-Lambda[0] + Lambda[2],)
sage: [c.f(i) for i in C.index_set()]
[None, None, (Lambda[1] - Lambda[2],)]
sage: R = C.R; R
Root system of type ['A', 2, 1]
sage: Lambda = R.weight_space().basis(); Lambda
Finite family {0: Lambda[0], 1: Lambda[1], 2: Lambda[2]}
sage: b=C(tuple([-Lambda[0]+Lambda[2]]))
sage: b==c
True
sage: b.f(2)
(Lambda[1] - Lambda[2],)
For classical highest weight crystals we can also compare the results with the tableaux implementation::
sage: C = CrystalOfLSPaths(['A',2],[1,1])
sage: list(set(C.list()))
[(-Lambda[1] - Lambda[2],), (-Lambda[1] + 1/2*Lambda[2], Lambda[1] - 1/2*Lambda[2]), (-Lambda[1] + 2*Lambda[2],),
(1/2*Lambda[1] - Lambda[2], -1/2*Lambda[1] + Lambda[2]), (Lambda[1] - 2*Lambda[2],), (-2*Lambda[1] + Lambda[2],),
(2*Lambda[1] - Lambda[2],), (Lambda[1] + Lambda[2],)]
sage: C.cardinality()
8
sage: B = CrystalOfTableaux(['A',2],shape=[2,1])
sage: B.cardinality()
8
sage: B.digraph().is_isomorphic(C.digraph())
True
TESTS::
sage: C = CrystalOfLSPaths(['A',2,1],[-1,0,1])
sage: TestSuite(C).run(skip=['_test_elements', '_test_elements_eq', '_test_enumerated_set_contains', '_test_some_elements'])
sage: C = CrystalOfLSPaths(['E',6],[1,0,0,0,0,0])
sage: TestSuite(C).run()
REFERENCES::
.. [L] P. Littelmann, Paths and root operators in representation theory. Ann. of Math. (2) 142 (1995), no. 3, 499-525.
"""
@staticmethod
def __classcall__(cls, cartan_type, starting_weight):
"""
cartan_type and starting_weight are lists, which are mutable. The class
UniqueRepresentation requires immutable inputs. The following code
fixes this problem.
TESTS::
sage: CrystalOfLSPaths.__classcall__(CrystalOfLSPaths,['A',2,1],[-1,0,1])
The crystal of LS paths of type ['A', 2, 1] and weight (-1, 0, 1)
"""
cartan_type = CartanType(cartan_type)
starting_weight = tuple(starting_weight)
return super(CrystalOfLSPaths, cls).__classcall__(cls, cartan_type, starting_weight)
def __init__(self, cartan_type, starting_weight):
"""
EXAMPLES::
sage: C = CrystalOfLSPaths(['A',2,1],[-1,0,1]); C
The crystal of LS paths of type ['A', 2, 1] and weight (-1, 0, 1)
sage: C.R
Root system of type ['A', 2, 1]
sage: C.weight
-Lambda[0] + Lambda[2]
sage: C.weight.parent()
Extended weight space over the Rational Field of the Root system of type ['A', 2, 1]
sage: C.module_generators
[(-Lambda[0] + Lambda[2],)]
"""
self._cartan_type = CartanType(cartan_type)
self.R = RootSystem(cartan_type)
self._name = "The crystal of LS paths of type %s and weight %s"%(cartan_type,starting_weight)
if self._cartan_type.is_affine():
self.extended = True
if all(i>=0 for i in starting_weight):
#.........這裏部分代碼省略.........
示例12: energy_function
def energy_function(self):
r"""
Return the energy function of ``self``.
The energy function `D(\pi)` of the level zero LS path `\pi \in \mathbb{B}_\mathrm{cl}(\lambda)`
requires a series of definitions; for simplicity the root system is assumed to be untwisted affine.
The LS path `\pi` is a piecewise linear map from the unit interval `[0,1]` to the weight lattice.
It is specified by "times" `0=\sigma_0<\sigma_1<\dotsm<\sigma_s=1` and "direction vectors"
`x_u \lambda` where `x_u \in W/W_J` for `1\le u\le s`, and `W_J` is the
stabilizer of `\lambda` in the finite Weyl group `W`. Precisely,
.. MATH::
\pi(t)=\sum_{u'=1}^{u-1} (\sigma_{u'}-\sigma_{u'-1})x_{u'}\lambda+(t-\sigma_{u-1})x_{u}\lambda
for `1\le u\le s` and `\sigma_{u-1} \le t \le \sigma_{u}`.
For any `x,y\in W/W_J` let
.. MATH::
d: x= w_{0} \stackrel{\beta_{1}}{\leftarrow}
w_{1} \stackrel{\beta_{2}}{\leftarrow} \cdots
\stackrel{\beta_{n}}{\leftarrow} w_{n}=y
be a shortest directed path in the parabolic quantum Bruhat graph. Define
.. MATH::
\mathrm{wt}(d):=\sum_{\substack{1\le k\le n \\ \ell(w_{k-1})<\ell(w_k)}}
\beta_{k}^{\vee}
It can be shown that `\mathrm{wt}(d)` depends only on `x,y`;
call its value `\mathrm{wt}(x,y)`. The energy function `D(\pi)` is defined by
.. MATH::
D(\pi)=-\sum_{u=1}^{s-1} (1-\sigma_{u}) \langle \lambda,\mathrm{wt}(x_u,x_{u+1}) \rangle
For more information, see [LNSSS2013]_.
REFERENCES:
.. [LNSSS2013] C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono,
A uniform model for Kirillov-Reshetikhin crystals. Extended abstract.
DMTCS proc, to appear ( {{{:arXiv:`1211.6019`}}} )
.. NOTE::
In the dual-of-untwisted case the parabolic quantum Bruhat graph that is used is obtained by
exchanging the roles of roots and coroots. Moreover, in the computation of the
pairing the short roots must be doubled (or tripled for type `G`). This factor
is determined by the translation factor of the corresponding root.
Type `BC` is viewed as untwisted type, whereas the dual of `BC` is viewed as twisted.
Except for the untwisted cases, these formulas are currently still conjectural.
EXAMPLES::
sage: R = RootSystem(['C',3,1])
sage: La = R.weight_space().basis()
sage: LS = CrystalOfProjectedLevelZeroLSPaths(La[1]+La[3])
sage: b = LS.module_generators[0]
sage: c = b.f(1).f(3).f(2)
sage: c.energy_function()
0
sage: c=b.e(0)
sage: c.energy_function()
1
sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space().basis()
sage: LS = CrystalOfProjectedLevelZeroLSPaths(2*La[1])
sage: b = LS.module_generators[0]
sage: c = b.e(0)
sage: c.energy_function()
1
sage: [c.energy_function() for c in sorted(LS.list())]
[0, 1, 0, 0, 0, 1, 0, 1, 0]
The next test checks that the energy function is constant on classically connected components::
sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space().basis()
sage: LS = CrystalOfProjectedLevelZeroLSPaths(2*La[1]+La[2])
sage: G = LS.digraph(index_set=[1,2])
sage: C = G.connected_components()
sage: [all(c[0].energy_function()==a.energy_function() for a in c) for c in C]
[True, True, True, True]
sage: R = RootSystem(['D',4,2])
sage: La = R.weight_space().basis()
sage: LS = CrystalOfProjectedLevelZeroLSPaths(La[2])
sage: J = R.cartan_type().classical().index_set()
sage: hw = [x for x in LS if x.is_highest_weight(J)]
sage: [(x.weight(), x.energy_function()) for x in hw]
[(-2*Lambda[0] + Lambda[2], 0), (-2*Lambda[0] + Lambda[1], 1), (0, 2)]
sage: G = LS.digraph(index_set=J)
sage: C = G.connected_components()
sage: [all(c[0].energy_function()==a.energy_function() for a in c) for c in C]
#.........這裏部分代碼省略.........
示例13: ClassicalCrystalOfAlcovePaths
#.........這裏部分代碼省略.........
.. [LP2008] C. Lenart and A. Postnikov. A combinatorial model for crystals of Kac-Moody algebras. Trans. Amer. Math. Soc. 360 (2008), 4349-4381.
"""
@staticmethod
def __classcall__(cls, cartan_type, highest_weight):
"""
cartan_type and heighest_weight are lists, which are mutable, this
causes a problem for class UniqueRepresentation, the following code
fixes this problem.
EXAMPLES::
sage: ClassicalCrystalOfAlcovePaths.__classcall__(ClassicalCrystalOfAlcovePaths,['A',3],[0,1,0])
<class 'sage.combinat.crystals.alcove_path.ClassicalCrystalOfAlcovePaths_with_category'>
"""
cartan_type = CartanType(cartan_type)
highest_weight = tuple(highest_weight)
return super(ClassicalCrystalOfAlcovePaths, cls).__classcall__(cls, cartan_type, highest_weight)
def __init__(self, cartan_type, highest_weight):
"""
EXAMPLES::
sage: C = ClassicalCrystalOfAlcovePaths(['A',3],[1,0,0])
sage: C.list()
[[], [0], [0, 1], [0, 1, 2]]
sage: TestSuite(C).run()
"""
Parent.__init__(self, category = ClassicalCrystals())
self._cartan_type = CartanType(cartan_type)
self._name = "The crystal of alcove paths for type %s"%cartan_type
self.chain_cache = {}
self.endweight_cache = {}
self.R = RootSystem(cartan_type)
alpha = self.R.root_space().simple_roots()
Lambda = self.R.weight_space().basis()
self.positive_roots = sorted(self.R.root_space().positive_roots());
self.weight = Lambda[Integer(1)] - Lambda[Integer(1)]
offset = self.R.index_set()[Integer(0)]
for j in self.R.index_set():
self.weight = self.weight + highest_weight[j-offset]*Lambda[j]
self.initial_element = self([])
self.initial_element.chain = self.get_initial_chain(self.weight)
rho = (Integer(1)/Integer(2))*sum(self.positive_roots)
self.initial_element.endweight = rho
self.chain_cache[ str([]) ] = self.initial_element.chain
self.endweight_cache[ str([]) ] = self.initial_element.endweight
self.module_generators = [self.initial_element]
self._list = super(ClassicalCrystalOfAlcovePaths, self).list()
self._digraph = super(ClassicalCrystalOfAlcovePaths, self).digraph()
self._digraph_closure = self.digraph().transitive_closure()
def get_initial_chain(self, highest_weight):
"""
Called internally by __init__() to construct the chain of roots
associated to the highest weight element.
EXAMPLES::
sage: C = ClassicalCrystalOfAlcovePaths(['A',3],[0,1,0])
示例14: one_dimensional_configuration_sum
def one_dimensional_configuration_sum(self, q = None, group_components = True):
r"""
Compute the one-dimensional configuration sum.
INPUT:
- ``q`` -- (default: ``None``) a variable or ``None``; if ``None``,
a variable ``q`` is set in the code
- ``group_components`` -- (default: ``True``) boolean; if ``True``,
then the terms are grouped by classical component
The one-dimensional configuration sum is the sum of the weights of all elements in the crystal
weighted by the energy function. For untwisted types it uses the parabolic quantum Bruhat graph, see [LNSSS2013]_.
In the dual-of-untwisted case, the parabolic quantum Bruhat graph is defined by
exchanging the roles of roots and coroots (which is still conjectural at this point).
EXAMPLES::
sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: LS.one_dimensional_configuration_sum() # long time
B[-2*Lambda[1] + 2*Lambda[2]] + (q+1)*B[-Lambda[1]]
+ (q+1)*B[Lambda[1] - Lambda[2]] + B[2*Lambda[1]] + B[-2*Lambda[2]] + (q+1)*B[Lambda[2]]
sage: R.<t> = ZZ[]
sage: LS.one_dimensional_configuration_sum(t, False) # long time
B[-2*Lambda[1] + 2*Lambda[2]] + (t+1)*B[-Lambda[1]] + (t+1)*B[Lambda[1] - Lambda[2]]
+ B[2*Lambda[1]] + B[-2*Lambda[2]] + (t+1)*B[Lambda[2]]
TESTS::
sage: R = RootSystem(['B',3,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1]+La[2])
sage: LS.one_dimensional_configuration_sum() == LS.one_dimensional_configuration_sum(group_components=False) # long time
True
sage: K1 = crystals.KirillovReshetikhin(['B',3,1],1,1)
sage: K2 = crystals.KirillovReshetikhin(['B',3,1],2,1)
sage: T = crystals.TensorProduct(K2,K1)
sage: T.one_dimensional_configuration_sum() == LS.one_dimensional_configuration_sum() # long time
True
sage: R = RootSystem(['D',4,2])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1]+La[2])
sage: K1 = crystals.KirillovReshetikhin(['D',4,2],1,1)
sage: K2 = crystals.KirillovReshetikhin(['D',4,2],2,1)
sage: T = crystals.TensorProduct(K2,K1)
sage: T.one_dimensional_configuration_sum() == LS.one_dimensional_configuration_sum() # long time
True
sage: R = RootSystem(['A',5,2])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(3*La[1])
sage: K1 = crystals.KirillovReshetikhin(['A',5,2],1,1)
sage: T = crystals.TensorProduct(K1,K1,K1)
sage: T.one_dimensional_configuration_sum() == LS.one_dimensional_configuration_sum() # long time
True
"""
if q is None:
from sage.rings.all import QQ
q = QQ['q'].gens()[0]
#P0 = self.weight_lattice_realization().classical()
P0 = RootSystem(self.cartan_type().classical()).weight_lattice()
B = P0.algebra(q.parent())
def weight(x):
w = x.weight()
return P0.sum(int(c)*P0.basis()[i] for i,c in w if i in P0.index_set())
if group_components:
G = self.digraph(index_set = self.cartan_type().classical().index_set())
C = G.connected_components()
return sum(q**(c[0].energy_function())*B.sum(B(weight(b)) for b in c) for c in C)
return B.sum(q**(b.energy_function())*B(weight(b)) for b in self)
示例15: __init__
def __init__(self, cartan_type, prefix, finite=True):
r"""
EXAMPLES::
sage: from sage.combinat.root_system.fundamental_group import FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',3,1])
sage: F in Groups().Commutative().Finite()
True
sage: TestSuite(F).run()
"""
def leading_support(beta):
r"""
Given a dictionary with one key, return this key
"""
supp = beta.support()
assert len(supp) == 1
return supp[0]
self._cartan_type = cartan_type
self._prefix = prefix
special_node = cartan_type.special_node()
self._special_nodes = cartan_type.special_nodes()
# initialize dictionaries with the entries for the distinguished special node
# dictionary of inverse elements
inverse_dict = {}
inverse_dict[special_node] = special_node
# dictionary for the action of special automorphisms by permutations of the affine Dynkin nodes
auto_dict = {}
for i in cartan_type.index_set():
auto_dict[special_node,i] = i
# dictionary for the finite Weyl component of the special automorphisms
reduced_words_dict = {}
reduced_words_dict[0] = tuple([])
if cartan_type.dual().is_untwisted_affine():
# this combines the computations for an untwisted affine type and its affine dual
cartan_type = cartan_type.dual()
if cartan_type.is_untwisted_affine():
cartan_type_classical = cartan_type.classical()
I = [i for i in cartan_type_classical.index_set()]
Q = RootSystem(cartan_type_classical).root_lattice()
alpha = Q.simple_roots()
omega = RootSystem(cartan_type_classical).weight_lattice().fundamental_weights()
W = Q.weyl_group(prefix="s")
for i in self._special_nodes:
if i == special_node:
continue
antidominant_weight, reduced_word = omega[i].to_dominant_chamber(reduced_word=True, positive=False)
reduced_words_dict[i] = tuple(reduced_word)
w0i = W.from_reduced_word(reduced_word)
idual = leading_support(-antidominant_weight)
inverse_dict[i] = idual
auto_dict[i,special_node] = i
for j in I:
if j == idual:
auto_dict[i,j] = special_node
else:
auto_dict[i,j] = leading_support(w0i.action(alpha[j]))
self._action = Family(self._special_nodes, lambda i: Family(cartan_type.index_set(), lambda j: auto_dict[i,j]))
self._dual_node = Family(self._special_nodes, inverse_dict.__getitem__)
self._reduced_words = Family(self._special_nodes, reduced_words_dict.__getitem__)
if finite:
cat = Category.join((Groups().Commutative().Finite(),EnumeratedSets()))
else:
cat = Groups().Commutative().Infinite()
Parent.__init__(self, category = cat)