本文整理匯總了Python中sage.combinat.permutation.Permutation類的典型用法代碼示例。如果您正苦於以下問題:Python Permutation類的具體用法?Python Permutation怎麽用?Python Permutation使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Permutation類的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: to_non_crossing_set_partition
def to_non_crossing_set_partition(self):
r"""
Returns the noncrossing set partition (on half as many elements)
corresponding to the perfect matching if the perfect matching is
noncrossing, and otherwise gives an error.
OUTPUT:
The realization of ``self`` as a noncrossing set partition.
EXAMPLES::
sage: PerfectMatching([[1,3], [4,2]]).to_non_crossing_set_partition()
Traceback (most recent call last):
...
ValueError: matching must be non-crossing
sage: PerfectMatching([[1,4], [3,2]]).to_non_crossing_set_partition()
{{1, 2}}
sage: PerfectMatching([]).to_non_crossing_set_partition()
{}
"""
from sage.combinat.set_partition import SetPartition
if not self.is_non_crossing():
raise ValueError("matching must be non-crossing")
else:
perm = self.to_permutation()
perm2 = Permutation([(perm[2*i])/2 for i in range(len(perm)/2)])
return SetPartition(perm2.cycle_tuples())
示例2: verify_representation
def verify_representation(self):
r"""
Verify the representation: tests that the images of the simple
transpositions are involutions and tests that the braid relations
hold.
EXAMPLES::
sage: spc = SymmetricGroupRepresentation([1,1,1])
sage: spc.verify_representation()
True
sage: spc = SymmetricGroupRepresentation([4,2,1])
sage: spc.verify_representation()
True
"""
n = self._partition.size()
transpositions = []
for i in range(1,n):
si = Permutation(range(1,i) + [i+1,i] + range(i+2,n+1))
transpositions.append(si)
repn_matrices = map(self.representation_matrix, transpositions)
for (i,si) in enumerate(repn_matrices):
for (j,sj) in enumerate(repn_matrices):
if i == j:
if si*sj != si.parent().identity_matrix():
return False, "si si != 1 for i = %s" % (i,)
elif abs(i-j) > 1:
if si*sj != sj*si:
return False, "si sj != sj si for (i,j) =(%s,%s)" % (i,j)
else:
if si*sj*si != sj*si*sj:
return False, "si sj si != sj si sj for (i,j) = (%s,%s)" % (i,j)
return True
示例3: _element_constructor_
def _element_constructor_(self, x):
r"""
Convert ``x`` into ``self``.
EXAMPLES::
sage: R = algebras.FQSym(QQ).G()
sage: x, y, z = R([1]), R([2,1]), R([3,2,1])
sage: R(x)
G[1]
sage: R(x+4*y)
G[1] + 4*G[2, 1]
sage: R(1)
G[]
sage: D = algebras.FQSym(ZZ).G()
sage: X, Y, Z = D([1]), D([2,1]), D([3,2,1])
sage: R(X-Y).parent()
Free Quasi-symmetric functions over Rational Field in the G basis
sage: R([1, 3, 2])
G[1, 3, 2]
sage: R(Permutation([1, 3, 2]))
G[1, 3, 2]
sage: R(SymmetricGroup(4)(Permutation([1,3,4,2])))
G[1, 3, 4, 2]
sage: RF = algebras.FQSym(QQ).F()
sage: R(RF([2, 3, 4, 1]))
G[4, 1, 2, 3]
sage: R(RF([3, 2, 4, 1]))
G[4, 2, 1, 3]
sage: DF = algebras.FQSym(ZZ).F()
sage: D(DF([2, 3, 4, 1]))
G[4, 1, 2, 3]
sage: R(DF([2, 3, 4, 1]))
G[4, 1, 2, 3]
sage: RF(R[2, 3, 4, 1])
F[4, 1, 2, 3]
"""
if isinstance(x, (list, tuple, PermutationGroupElement)):
x = Permutation(x)
try:
P = x.parent()
if isinstance(P, FreeQuasisymmetricFunctions.G):
if P is self:
return x
return self.element_class(self, x.monomial_coefficients())
except AttributeError:
pass
return CombinatorialFreeModule._element_constructor_(self, x)
示例4: SymmetricGroupBruhatIntervalPoset
def SymmetricGroupBruhatIntervalPoset(start, end):
"""
The poset of permutations with respect to Bruhat order.
INPUT:
- ``start`` - list permutation
- ``end`` - list permutation (same n, of course)
.. note::
Must have ``start`` <= ``end``.
EXAMPLES:
Any interval is rank symmetric if and only if it avoids these
permutations::
sage: P1 = Posets.SymmetricGroupBruhatIntervalPoset([1,2,3,4], [3,4,1,2])
sage: P2 = Posets.SymmetricGroupBruhatIntervalPoset([1,2,3,4], [4,2,3,1])
sage: ranks1 = [P1.rank(v) for v in P1]
sage: ranks2 = [P2.rank(v) for v in P2]
sage: [ranks1.count(i) for i in uniq(ranks1)]
[1, 3, 5, 4, 1]
sage: [ranks2.count(i) for i in uniq(ranks2)]
[1, 3, 5, 6, 4, 1]
"""
start = Permutation(start)
end = Permutation(end)
if len(start) != len(end):
raise TypeError("Start (%s) and end (%s) must have same length."%(start, end))
if not start.bruhat_lequal(end):
raise TypeError("Must have start (%s) <= end (%s) in Bruhat order."%(start, end))
unseen = [start]
nodes = {}
while len(unseen) > 0:
perm = unseen.pop(0)
nodes[perm] = [succ_perm for succ_perm in perm.bruhat_succ()
if succ_perm.bruhat_lequal(end)]
for succ_perm in nodes[perm]:
if succ_perm not in nodes:
unseen.append(succ_perm)
return Poset(nodes)
示例5: scalar_product_matrix
def scalar_product_matrix(self, permutation=None):
r"""
Return the scalar product matrix corresponding to ``permutation``.
The entries are given by the scalar products of ``u`` and
``permutation.action(v)``, where ``u`` is a vertex in the underlying
Yang-Baxter graph and ``v`` is a vertex in the dual graph.
EXAMPLES::
sage: spc = SymmetricGroupRepresentation([3,1], 'specht')
sage: spc.scalar_product_matrix()
[ 1 0 0]
[ 0 -1 0]
[ 0 0 1]
"""
if permutation is None:
permutation = Permutation(range(1,1+self._partition.size()))
Q = matrix(QQ, len(self._yang_baxter_graph))
for (i,v) in enumerate(self._dual_vertices):
for (j,u) in enumerate(self._yang_baxter_graph):
Q[i,j] = self.scalar_product(tuple(permutation.action(v)), u)
return Q
示例6: PermutationGraph
def PermutationGraph(second_permutation, first_permutation = None):
r"""
Build a permutation graph from one permutation or from two lists.
Definition:
If `\sigma` is a permutation of `\{ 1, 2, \ldots, n \}`, then the
permutation graph of `\sigma` is the graph on vertex set
`\{ 1, 2, \ldots, n \}` in which two vertices `i` and `j` satisfying
`i < j` are connected by an edge if and only if
`\sigma^{-1}(i) > \sigma^{-1}(j)`. A visual way to construct this
graph is as follows:
Take two horizontal lines in the euclidean plane, and mark points
`1, ..., n` from left to right on the first of them. On the second
one, still from left to right, mark `n` points
`\sigma(1), \sigma(2), \ldots, \sigma(n)`.
Now, link by a segment the two points marked with `1`, then link
together the points marked with `2`, and so on. The permutation
graph of `\sigma` is the intersection graph of those segments: there
exists a vertex in this graph for each element from `1` to `n`, two
vertices `i, j` being adjacent if the segments `i` and `j` cross
each other.
The set of edges of the permutation graph can thus be identified with
the set of inversions of the inverse of the given permutation
`\sigma`.
A more general notion of permutation graph can be defined as
follows: If `S` is a set, and `(a_1, a_2, \ldots, a_n)` and
`(b_1, b_2, \ldots, b_n)` are two lists of elements of `S`, each of
which lists contains every element of `S` exactly once, then the
permutation graph defined by these two lists is the graph on the
vertex set `S` in which two vertices `i` and `j` are connected by an
edge if and only if the order in which these vertices appear in the
list `(a_1, a_2, \ldots, a_n)` is the opposite of the order in which
they appear in the list `(b_1, b_2, \ldots, b_n)`. When
`(a_1, a_2, \ldots, a_n) = (1, 2, \ldots, n)`, this graph is the
permutation graph of the permutation
`(b_1, b_2, \ldots, b_n) \in S_n`. Notice that `S` does not have to
be a set of integers here, but can be a set of strings, tuples, or
anything else. We can still use the above visual description to
construct the permutation graph, but now we have to mark points
`a_1, a_2, \ldots, a_n` from left to right on the first horizontal
line and points `b_1, b_2, \ldots, b_n` from left to right on the
second horizontal line.
INPUT:
- ``second_permutation`` -- the unique permutation/list defining the graph,
or the second of the two (if the graph is to be built from two
permutations/lists).
- ``first_permutation`` (optional) -- the first of the two
permutations/lists from which the graph should be built, if it is to be
built from two permutations/lists.
When ``first_permutation is None`` (default), it is set to be equal to
``sorted(second_permutation)``, which yields the expected ordering when
the elements of the graph are integers.
.. SEEALSO:
- Recognition of Permutation graphs in the :mod:`comparability module
<sage.graphs.comparability>`.
- Drawings of permutation graphs as intersection graphs of segments is
possible through the
:meth:`~sage.combinat.permutation.Permutation.show` method of
:class:`~sage.combinat.permutation.Permutation` objects.
The correct argument to use in this case is ``show(representation =
"braid")``.
- :meth:`~sage.combinat.permutation.Permutation.inversions`
EXAMPLES::
sage: p = Permutations(5).random_element()
sage: PG = graphs.PermutationGraph(p)
sage: edges = PG.edges(labels=False)
sage: set(edges) == set(p.inverse().inversions())
True
sage: PG = graphs.PermutationGraph([3,4,5,1,2])
sage: sorted(PG.edges())
[(1, 3, None),
(1, 4, None),
(1, 5, None),
(2, 3, None),
(2, 4, None),
(2, 5, None)]
sage: PG = graphs.PermutationGraph([3,4,5,1,2], [1,4,2,5,3])
sage: sorted(PG.edges())
[(1, 3, None),
(1, 4, None),
(1, 5, None),
(2, 3, None),
(2, 5, None),
(3, 4, None),
#.........這裏部分代碼省略.........
示例7: __classcall_private__
def __classcall_private__(cls, p):
r"""
This function tries to recognize the input (it can be either a list or
a tuple of pairs, or a fix-point free involution given as a list or as
a permutation), constructs the parent (enumerated set of
PerfectMatchings of the ground set) and calls the __init__ function to
construct our object.
EXAMPLES::
sage: m = PerfectMatching([('a','e'),('b','c'),('d','f')]);m
[('a', 'e'), ('b', 'c'), ('d', 'f')]
sage: isinstance(m,PerfectMatching)
True
sage: n = PerfectMatching([3, 8, 1, 7, 6, 5, 4, 2]);n
[(1, 3), (2, 8), (4, 7), (5, 6)]
sage: n.parent()
Set of perfect matchings of {1, 2, 3, 4, 5, 6, 7, 8}
sage: PerfectMatching([(1, 4), (2, 3), (5, 6)]).is_non_crossing()
True
The function checks that the given list or permutation is a valid perfect
matching (i.e. a list of pairs with pairwise disjoint elements or a
fixpoint-free involution) and raises a ValueError otherwise:
sage: PerfectMatching([(1, 2, 3), (4, 5)])
Traceback (most recent call last):
...
ValueError: [(1, 2, 3), (4, 5)] is not a valid perfect matching: all elements of the list must be pairs
If you know your datas are in a good format, use directly
``PerfectMatchings(objects)(data)``.
TESTS::
sage: m = PerfectMatching([('a','e'),('b','c'),('d','f')])
sage: TestSuite(m).run()
sage: m = PerfectMatching([])
sage: TestSuite(m).run()
sage: PerfectMatching(6)
Traceback (most recent call last):
...
ValueError: cannot convert p (= 6) to a PerfectMatching
sage: PerfectMatching([(1,2,3)])
Traceback (most recent call last):
...
ValueError: [(1, 2, 3)] is not a valid perfect matching:
all elements of the list must be pairs
sage: PerfectMatching([(1,1)])
Traceback (most recent call last):
...
ValueError: [(1, 1)] is not a valid perfect matching:
there are some repetitions
sage: PerfectMatching(Permutation([4,2,1,3]))
Traceback (most recent call last):
...
ValueError: The permutation p (= [4, 2, 1, 3]) is not a fixed point free involution
"""
# we have to extract from the argument p the set of objects of the
# matching and the list of pairs.
# First case: p is a list (resp tuple) of lists (resp tuple).
if (isinstance(p, list) or isinstance(p, tuple)) and (
all([isinstance(x, list) or isinstance(x, tuple) for x in p])):
objects = Set(flatten(p))
data = (map(tuple, p))
#check if the data are correct
if not all([len(t) == 2 for t in data]):
raise ValueError("%s is not a valid perfect matching:\n"
"all elements of the list must be pairs" % p)
if len(objects) < 2*len(data):
raise ValueError("%s is not a valid perfect matching:\n"
"there are some repetitions" % p)
# Second case: p is a permutation or a list of integers, we have to
# check if it is a fix-point-free involution.
elif ((isinstance(p, list) and
all(map(lambda x: (isinstance(x, Integer) or isinstance(x, int)), p)))
or isinstance(p, Permutation)):
p = Permutation(p)
n = len(p)
if not(p.cycle_type() == [2 for i in range(n//2)]):
raise ValueError("The permutation p (= %s) is not a "
"fixed point free involution" % p)
objects = Set(range(1, n+1))
data = p.to_cycles()
# Third case: p is already a perfect matching, we return p directly
elif isinstance(p, PerfectMatching):
return p
else:
raise ValueError("cannot convert p (= %s) to a PerfectMatching" % p)
# Finally, we create the parent and the element using the element
# class of the parent. Note: as this function is private, when we
# create an object via parent.element_class(...), __init__ is directly
# executed and we do not have an infinite loop.
return PerfectMatchings(objects)(data)
示例8: divided_difference
#.........這裏部分代碼省略.........
This is compatible when a permutation is given as input::
sage: a = X([3,2,4,1])
sage: a.divided_difference([2,3,1])
0
sage: a.divided_difference(1).divided_difference(2)
0
::
sage: a = X([4,3,2,1])
sage: a.divided_difference([2,3,1])
X[3, 2, 4, 1]
sage: a.divided_difference(1).divided_difference(2)
X[3, 2, 4, 1]
sage: a.divided_difference([4,1,3,2])
X[1, 4, 2, 3]
sage: b = X([4, 1, 3, 2])
sage: b.divided_difference(1).divided_difference(2)
X[1, 3, 4, 2]
sage: b.divided_difference(1).divided_difference(2).divided_difference(3)
X[1, 3, 2]
sage: b.divided_difference(1).divided_difference(2).divided_difference(3).divided_difference(2)
X[1]
sage: b.divided_difference(1).divided_difference(2).divided_difference(3).divided_difference(3)
0
sage: b.divided_difference(1).divided_difference(2).divided_difference(1)
0
TESTS:
Check that :trac:`23403` is fixed::
sage: X = SchubertPolynomialRing(ZZ)
sage: a = X([3,2,4,1])
sage: a.divided_difference(2)
0
sage: a.divided_difference([3,2,1])
0
sage: a.divided_difference(0)
Traceback (most recent call last):
...
ValueError: cannot apply \delta_{0} to a (= X[3, 2, 4, 1])
"""
if not self: # if self is 0
return self
Perms = Permutations()
if i in ZZ:
if algorithm == "sage":
if i <= 0:
raise ValueError(r"cannot apply \delta_{%s} to a (= %s)" % (i, self))
# The operator `\delta_i` sends the Schubert
# polynomial `X_\pi` (where `\pi` is a finitely supported
# permutation of `\{1, 2, 3, \ldots\}`) to:
# - the Schubert polynomial X_\sigma`, where `\sigma` is
# obtained from `\pi` by switching the values at `i` and `i+1`,
# if `i` is a descent of `\pi` (that is, `\pi(i) > \pi(i+1)`);
# - `0` otherwise.
# Notice that distinct `\pi`s lead to distinct `\sigma`s,
# so we can use `_from_dict` here.
res_dict = {}
for pi, coeff in self:
pi = pi[:]
n = len(pi)
if n <= i:
continue
if pi[i-1] < pi[i]:
continue
pi[i-1], pi[i] = pi[i], pi[i-1]
pi = Perms(pi).remove_extra_fixed_points()
res_dict[pi] = coeff
return self.parent()._from_dict(res_dict)
else: # if algorithm == "symmetrica":
return symmetrica.divdiff_schubert(i, self)
elif i in Perms:
if algorithm == "sage":
i = Permutation(i)
redw = i.reduced_word()
res_dict = {}
for pi, coeff in self:
next_pi = False
pi = pi[:]
n = len(pi)
for j in redw:
if n <= j:
next_pi = True
break
if pi[j-1] < pi[j]:
next_pi = True
break
pi[j-1], pi[j] = pi[j], pi[j-1]
if next_pi:
continue
pi = Perms(pi).remove_extra_fixed_points()
res_dict[pi] = coeff
return self.parent()._from_dict(res_dict)
else: # if algorithm == "symmetrica":
return symmetrica.divdiff_perm_schubert(i, self)
else:
raise TypeError("i must either be an integer or permutation")
示例9: __classcall_private__
def __classcall_private__(cls, parts):
"""
Create a perfect matching from ``parts`` with the appropriate parent.
This function tries to recognize the input (it can be either a list or
a tuple of pairs, or a fix-point free involution given as a list or as
a permutation), constructs the parent (enumerated set of
PerfectMatchings of the ground set) and calls the __init__ function to
construct our object.
EXAMPLES::
sage: m = PerfectMatching([('a','e'),('b','c'),('d','f')]);m
[('a', 'e'), ('b', 'c'), ('d', 'f')]
sage: isinstance(m, PerfectMatching)
True
sage: n = PerfectMatching([3, 8, 1, 7, 6, 5, 4, 2]);n
[(1, 3), (2, 8), (4, 7), (5, 6)]
sage: n.parent()
Perfect matchings of {1, 2, 3, 4, 5, 6, 7, 8}
sage: PerfectMatching([(1, 4), (2, 3), (5, 6)]).is_noncrossing()
True
The function checks that the given list or permutation is
a valid perfect matching (i.e. a list of pairs with pairwise
disjoint elements or a fix point free involution) and raises
a ``ValueError`` otherwise::
sage: PerfectMatching([(1, 2, 3), (4, 5)])
Traceback (most recent call last):
...
ValueError: [(1, 2, 3), (4, 5)] is not an element of
Perfect matchings of {1, 2, 3, 4, 5}
TESTS::
sage: m = PerfectMatching([('a','e'),('b','c'),('d','f')])
sage: TestSuite(m).run()
sage: m = PerfectMatching([])
sage: TestSuite(m).run()
sage: PerfectMatching(6)
Traceback (most recent call last):
...
TypeError: 'sage.rings.integer.Integer' object is not iterable
sage: PerfectMatching([(1,2,3)])
Traceback (most recent call last):
...
ValueError: [(1, 2, 3)] is not an element of
Perfect matchings of {1, 2, 3}
sage: PerfectMatching([(1,1)])
Traceback (most recent call last):
...
ValueError: [(1)] is not an element of Perfect matchings of {1}
sage: PerfectMatching(Permutation([4,2,1,3]))
Traceback (most recent call last):
...
ValueError: permutation p (= [4, 2, 1, 3]) is not a
fixed point free involution
"""
if ((isinstance(parts, list) and
all((isinstance(x, (int, Integer)) for x in parts)))
or isinstance(parts, Permutation)):
s = Permutation(parts)
if not all(e == 2 for e in s.cycle_type()):
raise ValueError("permutation p (= {}) is not a "
"fixed point free involution".format(s))
parts = s.to_cycles()
base_set = frozenset(e for p in parts for e in p)
P = PerfectMatchings(base_set)
return P(parts)
示例10: PermutationGraph
def PermutationGraph(second_permutation, first_permutation = None):
r"""
Builds a permutation graph from one (or two) permutations.
General definition
A Permutation Graph can be encoded by a permutation `\sigma`
of `1, ..., n`. It is then built in the following way :
Take two horizontal lines in the euclidean plane, and mark points `1, ...,
n` from left to right on the first of them. On the second one, still from
left to right, mark point in the order in which they appear in `\sigma`.
Now, link by a segment the two points marked with 1, then link together
the points marked with 2, and so on. The permutation graph defined by the
permutation is the intersection graph of those segments : there exists a
point in this graph for each element from `1` to `n`, two vertices `i, j`
being adjacent if the segments `i` and `j` cross each other.
The set of edges of the resulting graph is equal to the set of inversions of
the inverse of the given permutation.
INPUT:
- ``second_permutation`` -- the permutation from which the graph should be
built. It corresponds to the ordering of the elements on the second line
(see previous definition)
- ``first_permutation`` (optional) -- the ordering of the elements on the
*first* line. This is useful when the elements have no natural ordering,
for instance when they are strings, or tuples, or anything else.
When ``first_permutation == None`` (default), it is set to be equal to
``sorted(second_permutation)``, which just yields the expected
ordering when the elements of the graph are integers.
.. SEEALSO:
- Recognition of Permutation graphs in the :mod:`comparability module
<sage.graphs.comparability>`.
- Drawings of permutation graphs as intersection graphs of segments is
possible through the
:meth:`~sage.combinat.permutation.Permutation.show` method of
:class:`~sage.combinat.permutation.Permutation` objects.
The correct argument to use in this case is ``show(representation =
"braid")``.
- :meth:`~sage.combinat.permutation.Permutation.inversions`
EXAMPLE::
sage: p = Permutations(5).random_element()
sage: edges = graphs.PermutationGraph(p).edges(labels =False)
sage: set(edges) == set(p.inverse().inversions())
True
TESTS::
sage: graphs.PermutationGraph([1, 2, 3], [4, 5, 6])
Traceback (most recent call last):
...
ValueError: The two permutations do not contain the same set of elements ...
"""
if first_permutation == None:
first_permutation = sorted(second_permutation)
else:
if set(second_permutation) != set(first_permutation):
raise ValueError("The two permutations do not contain the same "+
"set of elements ! It is going to be pretty "+
"hard to define a permutation graph from that !")
vertex_to_index = {}
for i, v in enumerate(first_permutation):
vertex_to_index[v] = i+1
from sage.combinat.permutation import Permutation
p2 = Permutation(map(lambda x:vertex_to_index[x], second_permutation))
p1 = Permutation(map(lambda x:vertex_to_index[x], first_permutation))
p2 = p2 * p1.inverse()
p2 = p2.inverse()
g = Graph(name="Permutation graph for "+str(second_permutation))
g.add_vertices(second_permutation)
for u,v in p2.inversions():
g.add_edge(first_permutation[u-1], first_permutation[v-1])
return g