本文整理匯總了Python中sage.all.NumberField類的典型用法代碼示例。如果您正苦於以下問題:Python NumberField類的具體用法?Python NumberField怎麽用?Python NumberField使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了NumberField類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: find_field
def find_field(pol, verbose=False):
"""
pol is a string holding a list of coefficients, constant first, 1 last, e.g. '-2,0,1'
Looks up this defining polynomial kn LMFDB and returns its label, or None
"""
coeffs = str_to_list(pol)
deg = len(coeffs)-1
if deg==2:
c, b, a = coeffs
d = ZZ(b*b-4*a*c).squarefree_part()
D = d if (d-1)%4==0 else 4*d
absD = D.abs()
s = 0 if d<0 else 2
return '2.{}.{}.1'.format(s,absD)
from lmfdb.number_fields.number_field import poly_to_field_label
poly = Qx(coeffs)
Flabel = poly_to_field_label(poly)
if Flabel==None:
print("********* field with polynomial {} is not in the database!".format(poly))
K = NumberField(poly, 'a')
poly = K.optimized_representation()[0].defining_polynomial()
print("********* using optimised polynomial {}".format(poly))
return poly_to_str(poly)
else:
if verbose:
print("{} has label {}".format(pol,Flabel))
return Flabel
示例2: get_number_field_integral_basis
def get_number_field_integral_basis(c_string):
r"""Get the integral basis for the field specified by the string.
INPUT:
c_string -- string, a string of comma-separated coefficients with no spaces: the coefficients of the normalized (using gp.polredabs) defining polynomial
OUTPUT:
fld_bool -- bool, True if the number field has a page in the LMFDB, False otherwise
K_new -- number field, the number field with defining polynomial that is the normalized version (given by gp.polredabs) of the one with coefficients specified by c_string
a -- number field element, generator for K_new
the integral basis for K_new recorded on its LMFDB page
"""
C = getDBconnection()
c_hash = field_coeffs_string_to_hash(c_string)
field = C.numberfields.fields.find_one({'coeffhash':c_hash})
fld_bool = True
try:
field['degree']
except TypeError:
fld_bool = False
if fld_bool:
field_str = field['coeffs']
int_basis_str = field['zk']
poly = coeffs_to_poly(field_str)
K_new = NumberField(poly, names=('a',))
(a,) = K_new._first_ngens(1)
return fld_bool, K_new, a, [K_new(eval(preparse(el))) for el in int_basis_str]
else:
# could add polynomial to list of number fields missing from LMFDB here
return fld_bool, None, None, None
示例3: _check
def _check(k, j):
M = vvsmf(j, k, prec)
if M.dimension() > 0:
self.assertEqual(M.dimension(), len(M.basis()))
_chply = M.hecke_charpoly(2)
for cply, _ in _chply.factor():
K = NumberField(cply, names="a")
a = K.gens()[0]
f = M.eigenform_with_eigenvalue_t2(a)
self.assert_hecke_eigen_values(f)
示例4: test_web_latex_ideal_fact
def test_web_latex_ideal_fact(self):
r"""
Checking utility: web_latex_ideal_fact
"""
from sage.all import NumberField
x = var('x')
K = NumberField(x**2 - 5, 'a')
a = K.gen()
I = K.ideal(2/(5+a)).factor()
self.assertEqual(web_latex_ideal_fact(I),
'\\( \\left(-a\\right)^{-1} \\)')
示例5: upsert_embedding
def upsert_embedding(id_number, skip = False):
rowcc = db.mf_hecke_cc.lucky({'id':id_number}, projection=['an', 'hecke_orbit_code','id','lfunction_label', 'embedding_root_imag','embedding_root_real'])
if rowcc is None:
return
if skip:
if rowcc.get("embedding_root_imag", None) is not None:
if rowcc.get("embedding_root_real", None) is not None:
return
row_embeddings = {}
hecke_orbit_code = rowcc['hecke_orbit_code']
newform = db.mf_newforms.lucky({'hecke_orbit_code':hecke_orbit_code})
if newform is None:
# No newform in db
return
if newform['dim'] == 1:
row_embeddings['embedding_root_imag'] = 0
row_embeddings['embedding_root_real'] = 0
elif newform['weight'] == 1:
return
elif newform.get('field_poly', None) is None:
return
else:
# print rowcc['lfunction_label']
HF = NumberField(ZZx(newform['field_poly']), "v")
numerators = newform['hecke_ring_numerators']
denominators = newform['hecke_ring_denominators']
betas = [HF(elt)/denominators[i] for i, elt in enumerate(numerators)]
embeddings = HF.complex_embeddings(prec=2000)
an_nf = list(db.mf_hecke_nf.search({'hecke_orbit_code':hecke_orbit_code}, ['n','an'], sort=['n']))
betas_embedded = [map(elt, betas) for elt in embeddings]
CCC = betas_embedded[0][0].parent()
qexp = [convert_eigenvals_to_qexp(elt, an_nf) for elt in betas_embedded]
min_len = min(len(rowcc['an']), len(qexp[0]))
an_cc = vector(CCC, map(lambda x: CCC(x[0], x[1]), rowcc['an'][:min_len]))
#qexp_diff = [ (vector(CCC, elt[:min_len]) - an_cc).norm() for elt in qexp ]
# normalized, to avoid the unstability comming from large weight
qexp_diff = [ vector([(elt- an_cc[i])/elt.abs() for i, elt in enumerate(q) if elt != 0]).norm() for j,q in enumerate(qexp)]
qexp_diff_sorted = sorted(qexp_diff)
min_diff = qexp_diff_sorted[0]
#print "min_diff = %.2e \t min_diff/2nd = %.2e" % (min_diff, min_diff/qexp_diff_sorted[1])
#assuring that is something close to zero, and that no other value is close to it
assert min_diff < 1e-6
assert min_diff/qexp_diff_sorted[1] < 1e-15
for i, elt in enumerate(qexp_diff):
if elt == min_diff:
row_embeddings['embedding_root_real'] = float(embeddings[i](HF.gen()).real())
row_embeddings['embedding_root_imag'] = float(embeddings[i](HF.gen()).imag())
break
assert len(row_embeddings) == 2
db.mf_hecke_cc.upsert({'id': rowcc['id']}, row_embeddings)
示例6: list_factored_to_factored_poly_otherorder
def list_factored_to_factored_poly_otherorder(sfacts_fc_list, galois=False, vari = 'T', p = None):
"""
Either return the polynomial in a nice factored form,
or return a pair, with first entry the factored polynomial
and the second entry a list describing the Galois groups
of the factors.
vari allows to choose the variable of the polynomial to be returned.
"""
gal_list=[]
ZZpT = PolynomialRing(ZZ, ['p',vari], order = 'negdeglex')
ZZT = PolynomialRing(ZZ, vari)
outstr = ''
for g, e in sfacts_fc_list:
if galois:
# hack because currently sage only handles monic polynomials:
this_poly = ZZT(list(reversed(g)))
this_degree = this_poly.degree()
this_number_field = NumberField(this_poly, "a")
this_gal = this_number_field.galois_group(type='pari')
this_t_number = this_gal.group().__pari__()[2].sage()
gal_list.append([this_degree, this_t_number])
# casting from ZZT -> ZZpT
if p is None:
gtoprint = dict( zip( zip( [0]*len(g), range(len(g))), g) )
else:
gtoprint = {}
for i, elt in enumerate(g):
if elt != 0:
val = ZZ(elt).valuation(p)
gtoprint[(val, i)] = elt/p**val
glatex = latex(ZZpT(gtoprint))
if e > 1:
outstr += '( %s )^{%d}' % (glatex, e)
elif len(sfacts_fc_list) > 1:
outstr += '( %s )' % (glatex,)
else:
outstr += glatex
if galois:
# 2 factors of degree 2
if len(sfacts_fc_list)==2:
if len(sfacts_fc_list[0][0]) == 3 and len(sfacts_fc_list[1][0]) == 3:
troubletest = ZZT(sfacts_fc_list[0][0]).disc()*ZZT(sfacts_fc_list[1][0]).disc()
if troubletest.is_square():
gal_list=[[2,1]]
return outstr, gal_list
return outstr
示例7: _test_an_dict_over_Q
def _test_an_dict_over_Q(ainvs, B=100):
"""
Test that the an_dict function works and gives the correct answer
for an elliptic curve defined over QQ, by computing using the
generic code in this file, and comparing with the output of Sage's
anlist function for rational elliptic curves.
"""
from sage.all import polygen, QQ, NumberField, EllipticCurve
x = polygen(QQ,'x')
F = NumberField(x - 1,'a'); a = F.gen()
E = EllipticCurve(F, ainvs)
EQ = EllipticCurve(QQ, ainvs)
v = EQ.anlist(B)
an = an_dict(E, B)
for i, j in an.iteritems():
assert j == v[i[0]]
示例8: test_ramanujan_conj
def test_ramanujan_conj(self):
'''Test Ramanujan conjectures for eigenforms of determinant weights
less than or equal to 29.
'''
prec = 6
hpl = hilbert_series_maybe(10)
for k in range(22, 30):
if hpl[k] != 0:
N = sym10_space(k, prec, data_directory=data_dir)
self.assertEqual(N.dimension(), len(N.basis()))
_chply = N.hecke_charpoly(2)
for cply, _ in _chply.factor():
K = NumberField(cply, names="a")
a = K.gens()[0]
f = N.eigenform_with_eigenvalue_t2(a)
self.assert_ramanujan_conj_eigenform(f)
示例9: create_small_record
def create_small_record(self, min_prec=10, want_prec=100, max_length = 5242880, max_height_qexp = default_max_height):
### creates a duplicate record (fs) of this webnewform
### with lower precision to load faster on the web
### we aim to have at most max_length bytes
### but at least min_prec coefficients and we desire to have want_prec
if min_prec>=self.prec:
raise ValueError("Need higher precision, self.prec = {}".format(self.prec))
if not hasattr(self, '_file_record_length'):
self.update_from_db()
l = self._file_record_length
if l > max_length or self.prec > want_prec:
nl = float(l)/float(self.prec)*float(want_prec)
if nl > max_length:
prec = max([floor(float(self.prec)/float(l)*float(max_length)), min_prec])
else:
prec = want_prec
emf_logger.debug("Creating a new record with prec = {}".format(prec))
self.prec = prec
include_coeffs = self.complexity_of_first_nonvanishing_coefficients() <= default_max_height
if include_coeffs:
self.q_expansion = self.q_expansion.truncate_powerseries(prec)
self._coefficients = {n:c for n,c in self._coefficients.iteritems() if n<prec}
else:
self.q_expansion = self.q_expansion.truncate_powerseries(1)
self._coefficients = {}
self.prec = 0
self.coefficient_field = NumberField(self.absolute_polynomial, names=str(self.coefficient_field.gen()))
self._embeddings['values'] = {n:c for n,c in self._embeddings['values'].iteritems() if n<prec}
self._embeddings['prec'] = prec
self.save_to_db()
示例10: test1
def test1(B=50):
"""
Tests that the functions all run without crashing over a specific number field.
Does not test that the output is correct. That should be in
another test.
"""
from sage.all import polygen, QQ, NumberField, EllipticCurve
x = polygen(QQ,'x')
F = NumberField(x**2 - x - 1,'a'); a = F.gen()
E = EllipticCurve([1,a+1,a,a,0])
ap(E,F.ideal(3))
primes_of_bounded_norm(F,B)
ap_list(E,B)
assert len(ap_list(E,B,primes=True)) == 2
apd = ap_dict(E,B)
reduced_rep(F.ideal(3))
assert an_dict(E,B) == an_dict_from_ap(apd, E.conductor(), B)
示例11: number_field_from_dict
def number_field_from_dict(d):
r"""
INPUT:
- 'd' -- {'base':F,'p':p,'g':g } where p is a polynomial in the variable(s) xN with coefficients in K. (The 'x' is just a convention)
OUTPUT:
- 'F' -- Number field extending K with relative minimal polynomial p.
"""
K = d['base']; p=d['relative polynomial']; g=d['gens']
if K=='QQ':
K = QQ
elif isinstance(K,dict):
K = number_field_from_dict(K)
else:
raise ValueError,"Could not construct number field!"
F = NumberField(K[g](p),names=g)
if F.absolute_degree()==1:
F = QQ
return F
示例12: get_hmfs_hecke_field_and_eigenvals
def get_hmfs_hecke_field_and_eigenvals(label):
"""Get the Hecke field and eigenvalues for the Hilbert modular form with given label.
INPUT:
label -- string, the label of the Hilbert modular form
OUTPUT:
K_old -- number field, the field containing the Hecke eigenvalues
e -- number field element, a generator for K_old over QQ
eigenvals -- list, a list of the Hecke eigenvalues
"""
C = getDBconnection()
# Should I use find_one, or something else?
R = PolynomialRing(QQ,names=('x'))
form = C.hmfs.forms.find_one({'label':label})
poly = R(str(form['hecke_polynomial']))
K_old = NumberField(poly, names=('e',))
(e,) = K_old._first_ngens(1)
eigenvals_str = form['hecke_eigenvalues']
eigenvals = [K_old(eval(preparse(el))) for el in eigenvals_str]
return K_old, e, eigenvals
示例13: find_newform_label
def find_newform_label(level,weight,character,field,aps):
r"""
Find the label of the newform orbit in the database which matches the input.
INPUT:
- 'level' -- the level,
- 'weight' -- the weight
- 'character' -- the character'
- 'field' -- the field, given in terms of a list of integer coefficients for the absolute polynomial
- 'aps' -- the coefficients - given as a dictionary of lists giving the coefficient in terms of the generator of the field as above.
EXAMPLE:
sage: find_newform_label(9,16,1,[-119880,0,1],{2:[0,1]})
u'e'
sage: find_newform_label(71,2,1,[-3,-4,1,1],{3:[0,-1,0]})
u'a'
sage: find_newform_label(71,2,1,[-3,-4,1,1],{5:[5,1,-1]})
u'a'
NOTE: We implicitly assume that the input given is correct in the sense that
if there is a unique orbit with a coefficient field of the same degree as the input
then we simply return that label. (This will save a lot of time...)
"""
from web_modform_space import WebModFormSpace
from sage.all import NumberField,QQ
M = WebModFormSpace(level=level,weight=weight,character=character)
if M.dimension_new_cusp_forms==1:
return 'a'
orbits = M.hecke_orbits
## construct field from field input...
if not isinstance(field,list):
raise ValueError,"Need to give field as a list!"
if not isinstance(aps,dict):
raise ValueError,"Need to give aps as a dict!"
if field == [1]:
NF = QQ
else:
NF = NumberField(QQ['x'](field),names='x')
degree_of_input = NF.absolute_degree()
degrees = map(lambda x:x[1].coefficient_field_degree,orbits.viewitems())
if degrees.count(degree_of_input)==0:
raise ValueError,"No newform with this level, weight, character and field degree!"
if degrees.count(degree_of_input)==1:
## If there is a unique mathcing field we return this orbit label.
l = filter(lambda x: x[1].coefficient_field_degree==degree_of_input,orbits.viewitems() )
return l[0][0]
aps_input = { p: NF(a) for p,a in aps.viewitems()}
possible_labels = orbits.keys()
for label,f in orbits.viewitems():
if f.coefficient_field_degree != degree_of_input:
possible_labels.remove(label)
continue
try:
for p,ap_input in aps_input.viewitems():
if f.coefficient_field == QQ:
homs = [lambda x: x]
else:
homs = f.coefficient(p).parent().Hom(NF)
for h in homs:
ap = h(f.coefficient(p))
if ap_input != ap:
possible_labels.remove(label)
raise StopIteration
except StopIteration:
continue
if len(possible_labels) > 1:
raise ArithmeticError,"Not sufficient data (or errors) to determine orbit!"
if len(possible_labels) == 0:
raise ArithmeticError,"Not sufficient data (or errors) to determine orbit! NO matching label found!"
return possible_labels[0]
示例14: hecke_ops
sage: c = F.primes_above(389)[0]
sage: T = hecke_ops(c, TH)
sage: for nm,p,t in T:
... print nm, p, t.charpoly().factor()
5 a + 2 (x - 6) * (x^2 + 4*x - 1) * (x^2 - x - 4)^2
9 3 (x - 10) * (x^2 + 3*x - 9) * (x^4 - 5*x^3 + 3*x^2 + 6*x - 4)
11 a + 3 (x - 12) * (x + 3)^2 * (x^4 - 17*x^2 + 68)
11 2*a + 3 (x - 12) * (x^2 + 5*x + 5) * (x^4 - x^3 - 23*x^2 + 18*x + 52)
"""
from sage.all import (NumberField, polygen, QQ, ZZ, QuaternionAlgebra,
cached_function, disk_cached_function)
x = polygen(QQ,'x')
F = NumberField(x**2 - x -1, 'a')
O_F = F.ring_of_integers()
B = QuaternionAlgebra(F, -1, -1, 'i,j,k')
def modp_splitting(p):
"""
INPUT:
- p -- ideal of the number field K = B.base() with ring O of integers.
OUTPUT:
- matrices I, J in M_2(O/p) such that i |--> I and j |--> J defines
an algebra morphism, i.e., I^2=a, J^2=b, I*J=-J*I.
EXAMPLES::
示例15: upsert_embedding
def upsert_embedding(id_number, skip = True):
rowcc = db.mf_hecke_cc.lucky({'id':id_number}, projection=['an_normalized', 'hecke_orbit_code','id','lfunction_label', 'embedding_root_imag','embedding_root_real'])
if rowcc is None:
return
if skip:
if rowcc.get("embedding_root_imag", None) is not None:
if rowcc.get("embedding_root_real", None) is not None:
return
row_embeddings = {}
hecke_orbit_code = rowcc['hecke_orbit_code']
newform = db.mf_newforms.lucky({'hecke_orbit_code':hecke_orbit_code},['label','weight','field_poly','dim'])
if newform is None:
# No newform in db
return
if newform['dim'] == 1:
row_embeddings['embedding_root_imag'] = 0
row_embeddings['embedding_root_real'] = 0
elif newform['weight'] == 1:
return
elif newform.get('field_poly', None) is None:
return
else:
# print rowcc['lfunction_label']
HF = NumberField(ZZx(newform['field_poly']), "v")
hecke_nf = db.mf_hecke_nf.lucky({'hecke_orbit_code':hecke_orbit_code}, ['hecke_ring_cyclotomic_generator','an','field_poly','hecke_ring_numerators','hecke_ring_denominators', 'hecke_ring_power_basis'])
assert hecke_nf is not None
assert newform['field_poly'] == hecke_nf['field_poly']
assert hecke_nf['hecke_ring_cyclotomic_generator'] == 0
if hecke_nf['hecke_ring_power_basis']:
v = HF.gens()[0]
betas = [ v**i for i in range(len(newform['field_poly'])) ]
else:
numerators = hecke_nf.get('hecke_ring_numerators')
denominators = hecke_nf.get('hecke_ring_denominators')
betas = [HF(elt)/denominators[i] for i, elt in enumerate(numerators)]
embeddings = HF.complex_embeddings(prec=2000)
an_nf = hecke_nf['an']
betas_embedded = [map(elt, betas) for elt in embeddings]
CCC = betas_embedded[0][0].parent()
normalization = -CCC(newform['weight'] - 1).real()/2
qexp = [convert_eigenvals_to_qexp(elt, an_nf, normalization) for elt in betas_embedded]
min_len = min(len(rowcc['an_normalized']), len(qexp[0]))
an_cc = vector(CCC, map(lambda x: CCC(x[0], x[1]), rowcc['an_normalized'][:min_len]))
#qexp_diff = [ (vector(CCC, elt[:min_len]) - an_cc).norm() for elt in qexp ]
# normalized, to avoid the unstability comming from large weight
qexp_diff = [ vector([(elt- an_cc[i])/elt.abs() for i, elt in enumerate(q) if elt != 0]).norm() for j,q in enumerate(qexp)]
qexp_diff_sorted = sorted(qexp_diff)
min_diff = qexp_diff_sorted[0]
#assuring that is something close to zero, and that no other value is close to it
assert min_diff < 1e-6 and min_diff/qexp_diff_sorted[1] < 1e-15, "id = %d label = %s\nmin_diff = %.2e \t min_diff/2nd = %.2e\nan_cc = %s\nqexp = %s" % (id_number, rowcc['lfunction_label'], min_diff, min_diff/qexp_diff_sorted[1], vector(ComplexField(20), an_cc[:5]), matrix(ComplexField(20), [elt[:5] for elt in qexp]))
for i, elt in enumerate(qexp_diff):
if elt == min_diff:
row_embeddings['embedding_root_real'] = float(embeddings[i](HF.gen()).real())
row_embeddings['embedding_root_imag'] = float(embeddings[i](HF.gen()).imag())
break
assert len(row_embeddings) == 2
db.mf_hecke_cc.upsert({'id': rowcc['id']}, row_embeddings)