本文整理匯總了Python中safe.impact_function.impact_function.ImpactFunction.hazard方法的典型用法代碼示例。如果您正苦於以下問題:Python ImpactFunction.hazard方法的具體用法?Python ImpactFunction.hazard怎麽用?Python ImpactFunction.hazard使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類safe.impact_function.impact_function.ImpactFunction
的用法示例。
在下文中一共展示了ImpactFunction.hazard方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_pre_processors_earthquake_contour
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def test_pre_processors_earthquake_contour(self):
"""Test the pre_processors_earthquake_contour"""
hazard_layer = load_test_raster_layer(
'gisv4', 'hazard', 'earthquake.asc')
exposure_layer = load_test_vector_layer(
'gisv4', 'exposure', 'building-points.geojson')
impact_function = ImpactFunction()
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
impact_function.crs = QgsCoordinateReferenceSystem(4326)
status, message = impact_function.prepare()
self.assertEqual(PREPARE_SUCCESS, status, message)
self.assertTrue(
pre_processor_earthquake_contour['condition'](impact_function))
hazard_layer = load_test_raster_layer(
'hazard', 'classified_flood_20_20.asc')
exposure_layer = load_test_vector_layer(
'gisv4', 'exposure', 'places.geojson')
impact_function = ImpactFunction()
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
impact_function.crs = QgsCoordinateReferenceSystem(4326)
status, message = impact_function.prepare()
self.assertEqual(PREPARE_SUCCESS, status, message)
# not ok, since the hazard is flood, not earthquake
self.assertFalse(
pre_processor_earthquake_contour['condition'](impact_function))
示例2: test_pre_processors_nearby_places
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def test_pre_processors_nearby_places(self):
"""Test the pre_processors_nearby_places"""
hazard_layer = load_test_raster_layer(
'gisv4', 'hazard', 'earthquake.asc')
exposure_layer = load_test_vector_layer(
'gisv4', 'exposure', 'building-points.geojson')
impact_function = ImpactFunction()
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
impact_function.crs = QgsCoordinateReferenceSystem(4326)
status, message = impact_function.prepare()
self.assertEqual(PREPARE_SUCCESS, status, message)
# The exposure is not place but buildings
self.assertFalse(
pre_processors_nearby_places['condition'](impact_function))
hazard_layer = load_test_raster_layer(
'gisv4', 'hazard', 'earthquake.asc')
exposure_layer = load_test_vector_layer(
'gisv4', 'exposure', 'places.geojson')
impact_function = ImpactFunction()
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
impact_function.crs = QgsCoordinateReferenceSystem(4326)
status, message = impact_function.prepare()
self.assertEqual(PREPARE_SUCCESS, status, message)
# EQ on places, it must be OK.
self.assertTrue(
pre_processors_nearby_places['condition'](impact_function))
示例3: test_old_fields_keywords
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def test_old_fields_keywords(self):
"""The IF is not ready with we have some wrong inasafe_fields."""
hazard_layer = load_test_vector_layer(
'gisv4', 'hazard', 'classified_vector.geojson')
exposure_layer = load_test_vector_layer(
'gisv4', 'exposure', 'building-points.geojson',
clone=True)
aggregation_layer = load_test_vector_layer(
'gisv4', 'aggregation', 'small_grid.geojson')
impact_function = ImpactFunction()
impact_function.aggregation = aggregation_layer
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
status, message = impact_function.prepare()
# The layer should be fine.
self.assertEqual(PREPARE_SUCCESS, status, message)
# Now, we remove one field
exposure_layer.startEditing()
field = exposure_layer.keywords['inasafe_fields'].values()[0]
index = exposure_layer.fieldNameIndex(field)
exposure_layer.deleteAttribute(index)
exposure_layer.commitChanges()
# It shouldn't be fine as we removed one field which
# was in inasafe_fields
status, message = impact_function.prepare()
self.assertNotEqual(PREPARE_SUCCESS, status, message)
示例4: test_profiling
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def test_profiling(self):
"""Test running impact function on test data."""
hazard_layer = load_test_vector_layer(
'gisv4', 'hazard', 'classified_vector.geojson')
exposure_layer = load_test_vector_layer(
'gisv4', 'exposure', 'building-points.geojson')
aggregation_layer = load_test_vector_layer(
'gisv4', 'aggregation', 'small_grid.geojson')
# Set up impact function
impact_function = ImpactFunction()
impact_function.aggregation = aggregation_layer
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
status, message = impact_function.run()
self.assertEqual(ANALYSIS_FAILED_BAD_INPUT, status, message)
impact_function.prepare()
status, message = impact_function.run()
self.assertEqual(ANALYSIS_SUCCESS, status, message)
message = impact_function.performance_log_message().to_text()
expected_result = get_control_text(
'test-profiling-logs.txt')
for line in expected_result:
line = line.replace('\n', '')
if line == '' or line == '-':
continue
self.assertIn(line, message)
# Notes(IS): For some unknown reason I need to do this to make
# test_provenance pass
del hazard_layer
示例5: test_analysis_earthquake_summary
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def test_analysis_earthquake_summary(self):
"""Test we can compute summary after an EQ on population."""
hazard = load_test_raster_layer('gisv4', 'hazard', 'earthquake.asc')
exposure = load_test_raster_layer(
'gisv4', 'exposure', 'raster', 'population.asc')
aggregation = load_test_vector_layer(
'gisv4', 'aggregation', 'small_grid.geojson')
impact_function = ImpactFunction()
impact_function.hazard = hazard
impact_function.exposure = exposure
impact_function.aggregation = aggregation
status, message = impact_function.prepare()
self.assertEqual(PREPARE_SUCCESS, status, message)
status, message = impact_function.run()
self.assertEqual(ANALYSIS_SUCCESS, status, message)
layer = impact_function.analysis_impacted
classification = hazard.keywords['classification']
classes = definition(classification)['classes']
for hazard_class in classes:
field_name = hazard_count_field['field_name'] % hazard_class['key']
message = '%s is not found in the EQ summary layer.' % field_name
self.assertNotEqual(-1, layer.fieldNameIndex(field_name), message)
check_inasafe_fields(impact_function.analysis_impacted)
check_inasafe_fields(impact_function.aggregation_summary)
示例6: prepare_impact_function
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def prepare_impact_function(self):
"""Create analysis as a representation of current situation of IFCW."""
# Impact Functions
impact_function = ImpactFunction()
impact_function.callback = self.progress_callback
# Layers
impact_function.hazard = self.parent.hazard_layer
impact_function.exposure = self.parent.exposure_layer
aggregation = self.parent.aggregation_layer
if aggregation:
impact_function.aggregation = aggregation
impact_function.use_selected_features_only = (
setting('useSelectedFeaturesOnly', False, bool))
else:
mode = setting('analysis_extents_mode')
if self.extent.user_extent:
# This like a hack to transform a geometry to a rectangle.
# self.extent.user_extent is a QgsGeometry.
# impact_function.requested_extent needs a QgsRectangle.
wkt = self.extent.user_extent.exportToWkt()
impact_function.requested_extent = wkt_to_rectangle(wkt)
impact_function.requested_extent_crs = self.extent.crs
elif mode == HAZARD_EXPOSURE_VIEW:
impact_function.requested_extent = (
self.iface.mapCanvas().extent())
impact_function.requested_extent_crs = self.extent.crs
# We don't have any checkbox in the wizard for the debug mode.
impact_function.debug_mode = False
return impact_function
示例7: test_provenance_without_aggregation
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def test_provenance_without_aggregation(self):
"""Test provenance of impact function without aggregation."""
hazard_layer = load_test_vector_layer(
'gisv4', 'hazard', 'classified_vector.geojson')
exposure_layer = load_test_vector_layer(
'gisv4', 'exposure', 'building-points.geojson')
hazard = definition(hazard_layer.keywords['hazard'])
exposure = definition(exposure_layer.keywords['exposure'])
hazard_category = definition(hazard_layer.keywords['hazard_category'])
expected_provenance = {
'gdal_version': gdal.__version__,
'host_name': gethostname(),
'map_title': get_map_title(hazard, exposure, hazard_category),
'map_legend_title': exposure['layer_legend_title'],
'inasafe_version': get_version(),
'pyqt_version': PYQT_VERSION_STR,
'qgis_version': QGis.QGIS_VERSION,
'qt_version': QT_VERSION_STR,
'user': getpass.getuser(),
'os': readable_os_version(),
'aggregation_layer': None,
'aggregation_layer_id': None,
'exposure_layer': exposure_layer.source(),
'exposure_layer_id': exposure_layer.id(),
'hazard_layer': hazard_layer.source(),
'hazard_layer_id': hazard_layer.id(),
'analysis_question': get_analysis_question(hazard, exposure),
'aggregation_keywords': None,
'exposure_keywords': deepcopy(exposure_layer.keywords),
'hazard_keywords': deepcopy(hazard_layer.keywords),
}
# Set up impact function
impact_function = ImpactFunction()
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
status, message = impact_function.prepare()
self.assertEqual(PREPARE_SUCCESS, status, message)
status, message = impact_function.run()
self.assertEqual(ANALYSIS_SUCCESS, status, message)
self.maxDiff = None
expected_provenance.update({
'action_checklist': impact_function.action_checklist(),
'analysis_extent': impact_function.analysis_extent.exportToWkt(),
'impact_function_name': impact_function.name,
'impact_function_title': impact_function.title,
'notes': impact_function.notes(),
'requested_extent': impact_function.requested_extent,
'data_store_uri': impact_function.datastore.uri_path,
'start_datetime': impact_function.start_datetime,
'end_datetime': impact_function.end_datetime,
'duration': impact_function.duration
})
self.assertDictEqual(expected_provenance, impact_function.provenance)
示例8: test_impact_function_behaviour
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def test_impact_function_behaviour(self):
"""Test behaviour of impact function."""
hazard_layer = load_test_vector_layer(
'hazard', 'flood_multipart_polygons.shp')
exposure_layer = load_test_vector_layer('exposure', 'roads.shp')
impact_function = ImpactFunction()
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
impact_function.prepare()
self.assertEqual(impact_function.name, 'Flood Polygon On Road Line')
self.assertEqual(impact_function.title, 'be affected')
示例9: test_raster_post_minimum_needs_value_generation
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def test_raster_post_minimum_needs_value_generation(self):
"""Test minimum needs postprocessors on raster exposure.
Minimum needs postprocessors is defined to only generate values
when exposure contains population data.
Especially important to test, since on raster exposure the population
field is generated on the fly.
The postprocessors need to expect generated population field exists.
"""
# # #
# Test with raster exposure data with population_exposure_count
# exists.
# # #
hazard_layer = load_test_raster_layer(
'hazard', 'tsunami_wgs84.tif')
exposure_layer = load_test_raster_layer(
'exposure', 'pop_binary_raster_20_20.asc')
impact_function = ImpactFunction()
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
impact_function.prepare()
return_code, message = impact_function.run()
self.assertEqual(return_code, ANALYSIS_SUCCESS, message)
# minimum needs fields should exists in the results
self._check_minimum_fields_exists(impact_function)
# TODO: should include demographic postprocessor value too
expected_value = {
u'total_affected': 9.208200000039128,
u'minimum_needs__rice': 25,
u'minimum_needs__toilets': 0,
u'minimum_needs__drinking_water': 161,
u'minimum_needs__clean_water': 616,
u'male': 4,
u'female': 4,
u'youth': 2,
u'adult': 6,
u'elderly': 0,
u'total': 162.7667000000474,
u'minimum_needs__family_kits': 1,
u'total_not_affected': 153.55850000000828,
}
self._check_minimum_fields_value(expected_value, impact_function)
示例10: test_vector_post_minimum_needs_value_generation
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def test_vector_post_minimum_needs_value_generation(self):
"""Test minimum needs postprocessors on vector exposure.
Test with vector exposure data with population_count_field exists.
Minimum needs postprocessors is defined to only generate values when
exposure contains population data.
"""
hazard_layer = load_test_vector_layer(
'gisv4', 'hazard', 'tsunami_vector.geojson')
exposure_layer = load_test_vector_layer(
'gisv4', 'exposure', 'population.geojson')
aggregation_layer = load_test_vector_layer(
'gisv4', 'aggregation', 'small_grid.geojson')
impact_function = ImpactFunction()
impact_function.aggregation = aggregation_layer
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
status, message = impact_function.prepare()
self.assertEqual(PREPARE_SUCCESS, status, message)
return_code, message = impact_function.run()
self.assertEqual(return_code, ANALYSIS_SUCCESS, message)
# minimum needs fields should exists in the results
self._check_minimum_fields_exists(impact_function)
expected_value = {
u'population': 69,
u'total': 9.0,
u'minimum_needs__rice': 491,
u'minimum_needs__clean_water': 11763,
u'minimum_needs__toilets': 8,
u'minimum_needs__drinking_water': 3072,
u'minimum_needs__family_kits': 35,
u'male': 34,
u'female': 34,
u'youth': 17,
u'adult': 45,
u'elderly': 6,
u'total_affected': 6.0,
}
self._check_minimum_fields_value(expected_value, impact_function)
示例11: impact_function_setup
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def impact_function_setup(
command_line_arguments, hazard, exposure, aggregation=None):
"""Sets up an analysis object.
.. versionadded:: 3.2
:param command_line_arguments: User inputs.
:type command_line_arguments: CommandLineArguments
:param hazard: Hazard layer
:type hazard: QgsLayer
:param exposure: Exposure Layer
:type exposure: QgsLayer
:param aggregation: Aggregation Layer
:type aggregation: QgsLayer
:raises: Exception
"""
# IF
impact_function = ImpactFunction()
impact_function.hazard = hazard
impact_function.exposure = exposure
impact_function.aggregation = aggregation
impact_function.map_canvas = CANVAS
# QSetting context
settings = QSettings()
crs = settings.value('inasafe/user_extent_crs', '', type=str)
impact_function.requested_extent_crs = QgsCoordinateReferenceSystem(crs)
try:
impact_function.requested_extent = QgsRectangle(
float(command_line_arguments.extent[0]),
float(command_line_arguments.extent[1]),
float(command_line_arguments.extent[2]),
float(command_line_arguments.extent[3])
)
except AttributeError:
print "No extents"
pass
return impact_function
示例12: test_ratios_with_raster_exposure
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def test_ratios_with_raster_exposure(self):
"""Test if we can add defaults to a raster exposure.
See ticket #3851 how to manage ratios with a raster exposure.
"""
hazard_layer = load_test_vector_layer(
'gisv4', 'hazard', 'tsunami_vector.geojson')
exposure_layer = load_test_raster_layer(
'gisv4', 'exposure', 'raster', 'population.asc')
# Set up impact function
impact_function = ImpactFunction()
impact_function.debug_mode = True
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
impact_function.prepare()
status, message = impact_function.run()
self.assertEqual(ANALYSIS_SUCCESS, status, message)
for layer in impact_function.outputs:
if layer.keywords['layer_purpose'] == (
layer_purpose_analysis_impacted['key']):
analysis = layer
if layer.keywords['layer_purpose'] == (
layer_purpose_aggregate_hazard_impacted['key']):
impact = layer
# We check in the impact layer if we have :
# female default ratio with the default value
index = impact.fieldNameIndex(female_ratio_field['field_name'])
self.assertNotEqual(-1, index)
unique_values = impact.uniqueValues(index)
self.assertEqual(1, len(unique_values))
female_ratio = unique_values[0]
# female displaced count and youth displaced count
self.assertNotEqual(
-1, impact.fieldNameIndex(
female_displaced_count_field['field_name']))
self.assertNotEqual(
-1, impact.fieldNameIndex(
youth_displaced_count_field['field_name']))
# Check that we have more than 0 female displaced in the analysis layer
index = analysis.fieldNameIndex(
female_displaced_count_field['field_name'])
female_displaced = analysis.uniqueValues(index)[0]
self.assertGreater(female_displaced, 0)
# Let's check computation
index = analysis.fieldNameIndex(
displaced_field['field_name'])
displaced_population = analysis.uniqueValues(index)[0]
self.assertEqual(
int(displaced_population * female_ratio), female_displaced)
# Check that we have more than 0 youth displaced in the analysis layer
index = analysis.fieldNameIndex(
female_displaced_count_field['field_name'])
value = analysis.uniqueValues(index)[0]
self.assertGreater(value, 0)
# Let do another test with the special aggregation layer
hazard_layer = load_test_vector_layer(
'gisv4', 'hazard', 'tsunami_vector.geojson')
exposure_layer = load_test_raster_layer(
'gisv4', 'exposure', 'raster', 'population.asc')
aggregation_layer = load_test_vector_layer(
'gisv4', 'aggregation', 'small_grid_ratios.geojson')
# This aggregation layer has :
# * a field for female ratio : 1, 0.5 and 0
# * use global default for youth ratio
# * do not ust for adult ratio
# * use custom 0.75 for elderly ratio
# Set up impact function
impact_function = ImpactFunction()
impact_function.debug_mode = True
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
impact_function.aggregation = aggregation_layer
status, message = impact_function.prepare()
self.assertEqual(PREPARE_SUCCESS, status, message)
status, message = impact_function.run()
self.assertEqual(ANALYSIS_SUCCESS, status, message)
impact = impact_function.impact
# We should have a female_ratio with many values
index = impact.fieldNameIndex(female_ratio_field['field_name'])
self.assertNotEqual(-1, index)
values = impact.uniqueValues(index)
self.assertEqual(3, len(values))
# We should have a youth_ratio with global default
index = impact.fieldNameIndex(youth_ratio_field['field_name'])
self.assertNotEqual(-1, index)
values = impact.uniqueValues(index)
self.assertEqual(1, len(values))
#.........這裏部分代碼省略.........
示例13: test_ratios_with_vector_exposure
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def test_ratios_with_vector_exposure(self):
"""Test if we can add defaults to a vector exposure."""
# First test, if we do not provide an aggregation,
hazard_layer = load_test_vector_layer(
'gisv4', 'hazard', 'classified_vector.geojson')
exposure_layer = load_test_vector_layer(
'gisv4', 'exposure', 'population.geojson')
# Set up impact function
impact_function = ImpactFunction()
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
impact_function.prepare()
# Let's remove one field from keywords.
# We monkey patch keywords for testing after `prepare` & before `run`.
fields = impact_function.exposure.keywords['inasafe_fields']
del fields[female_count_field['key']]
status, message = impact_function.run()
self.assertEqual(ANALYSIS_SUCCESS, status, message)
impact = impact_function.impact
# We check the field exist after the IF with only one value.
field = impact.fieldNameIndex(
female_ratio_field['field_name'])
self.assertNotEqual(-1, field)
unique_ratio = impact.uniqueValues(field)
self.assertEqual(1, len(unique_ratio), unique_ratio)
self.assertEqual(
unique_ratio[0], female_ratio_default_value['default_value'])
# Second test, if we provide an aggregation without a default ratio 0.2
expected_ratio = 1.0
hazard_layer = load_test_vector_layer(
'gisv4', 'hazard', 'classified_vector.geojson')
exposure_layer = load_test_vector_layer(
'gisv4', 'exposure', 'population.geojson')
aggregation_layer = load_test_vector_layer(
'gisv4', 'aggregation', 'small_grid.geojson')
# Set up impact function
impact_function = ImpactFunction()
impact_function.aggregation = aggregation_layer
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
impact_function.debug_mode = True
impact_function.prepare()
# The `prepare` reads keywords from the file.
impact_function.aggregation.keywords['inasafe_default_values'] = {
elderly_ratio_field['key']: expected_ratio
}
fields = impact_function.exposure.keywords['inasafe_fields']
del fields[female_count_field['key']]
status, message = impact_function.run()
self.assertEqual(ANALYSIS_SUCCESS, status, message)
impact = impact_function.impact
# We check the field exist after the IF with only original values.
field = impact.fieldNameIndex(
female_ratio_field['field_name'])
self.assertNotEqual(-1, field)
unique_ratio = impact.uniqueValues(field)
self.assertEqual(3, len(unique_ratio), unique_ratio)
# We check the field exist after the IF with only one value.
field = impact.fieldNameIndex(
elderly_ratio_field['field_name'])
self.assertNotEqual(-1, field)
unique_ratio = impact.uniqueValues(field)
self.assertEqual(1, len(unique_ratio), unique_ratio)
self.assertEqual(expected_ratio, unique_ratio[0])
# Third test, if we provide an aggregation with a ratio and the
# exposure has a count, we should a have a ratio from the exposure
# count.
hazard_layer = load_test_vector_layer(
'gisv4', 'hazard', 'classified_vector.geojson')
exposure_layer = load_test_vector_layer(
'gisv4', 'exposure', 'population.geojson')
aggregation_layer = load_test_vector_layer(
'gisv4', 'aggregation', 'small_grid.geojson')
# Set up impact function
impact_function = ImpactFunction()
impact_function.debug_mode = True
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
impact_function.aggregation = aggregation_layer
impact_function.prepare()
status, message = impact_function.run()
self.assertEqual(ANALYSIS_SUCCESS, status, message)
impact = impact_function.impact
# Check that we have don't have only one unique value since the ratio
# depends on the "population / female count" and we should have at
# least different ratios.
field = impact.fieldNameIndex(
female_ratio_field['field_name'])
self.assertNotEqual(-1, field)
#.........這裏部分代碼省略.........
示例14: run_scenario
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def run_scenario(scenario, use_debug=False):
"""Run scenario.
:param scenario: Dictionary of hazard, exposure, and aggregation.
:type scenario: dict
:param use_debug: If we should use debug_mode when we run the scenario.
:type use_debug: bool
:returns: Tuple(status, Flow dictionary, outputs).
:rtype: list
"""
if os.path.exists(scenario['exposure']):
exposure_path = scenario['exposure']
elif os.path.exists(standard_data_path('exposure', scenario['exposure'])):
exposure_path = standard_data_path('exposure', scenario['exposure'])
elif os.path.exists(
standard_data_path(*(scenario['exposure'].split('/')))):
exposure_path = standard_data_path(*(scenario['exposure'].split('/')))
else:
raise IOError('No exposure file')
if os.path.exists(scenario['hazard']):
hazard_path = scenario['hazard']
elif os.path.exists(standard_data_path('hazard', scenario['hazard'])):
hazard_path = standard_data_path('hazard', scenario['hazard'])
elif os.path.exists(standard_data_path(*(scenario['hazard'].split('/')))):
hazard_path = standard_data_path(*(scenario['hazard'].split('/')))
else:
raise IOError('No hazard file')
if not scenario['aggregation']:
aggregation_path = None
else:
if os.path.exists(scenario['aggregation']):
aggregation_path = scenario['aggregation']
elif os.path.exists(standard_data_path(
'aggregation', scenario['aggregation'])):
aggregation_path = standard_data_path(
'aggregation', scenario['aggregation'])
elif os.path.exists(
standard_data_path(*(scenario['aggregation'].split('/')))):
aggregation_path = standard_data_path(
*(scenario['aggregation'].split('/')))
else:
raise IOError('No aggregation file')
impact_function = ImpactFunction()
impact_function.debug_mode = use_debug
layer = QgsVectorLayer(hazard_path, 'Hazard', 'ogr')
if not layer.isValid():
layer = QgsRasterLayer(hazard_path, 'Hazard')
impact_function.hazard = layer
layer = QgsVectorLayer(exposure_path, 'Exposure', 'ogr')
if not layer.isValid():
layer = QgsRasterLayer(exposure_path, 'Exposure')
impact_function.exposure = layer
if aggregation_path:
impact_function.aggregation = QgsVectorLayer(
aggregation_path, 'Aggregation', 'ogr')
status, message = impact_function.prepare()
if status != 0:
return status, message, None
status, message = impact_function.run()
if status != 0:
return status, message, None
for layer in impact_function.outputs:
if layer.type() == QgsMapLayer.VectorLayer:
check_inasafe_fields(layer)
return status, impact_function.state, impact_function.outputs
示例15: test_provenance_without_aggregation
# 需要導入模塊: from safe.impact_function.impact_function import ImpactFunction [as 別名]
# 或者: from safe.impact_function.impact_function.ImpactFunction import hazard [as 別名]
def test_provenance_without_aggregation(self):
"""Test provenance of impact function without aggregation."""
hazard_layer = load_test_vector_layer(
'gisv4', 'hazard', 'classified_vector.geojson')
exposure_layer = load_test_vector_layer(
'gisv4', 'exposure', 'building-points.geojson')
hazard = definition(hazard_layer.keywords['hazard'])
exposure = definition(exposure_layer.keywords['exposure'])
hazard_category = definition(hazard_layer.keywords['hazard_category'])
expected_provenance = {
provenance_gdal_version['provenance_key']: gdal.__version__,
provenance_host_name['provenance_key']: gethostname(),
provenance_map_title['provenance_key']: get_map_title(
hazard, exposure, hazard_category),
provenance_map_legend_title['provenance_key']: exposure[
'layer_legend_title'],
provenance_user['provenance_key']: getpass.getuser(),
provenance_os['provenance_key']: readable_os_version(),
provenance_pyqt_version['provenance_key']: PYQT_VERSION_STR,
provenance_qgis_version['provenance_key']: QGis.QGIS_VERSION,
provenance_qt_version['provenance_key']: QT_VERSION_STR,
provenance_inasafe_version['provenance_key']: get_version(),
provenance_aggregation_layer['provenance_key']: None,
provenance_aggregation_layer_id['provenance_key']: None,
provenance_exposure_layer['provenance_key']:
exposure_layer.source(),
provenance_exposure_layer_id['provenance_key']:
exposure_layer.id(),
provenance_hazard_layer['provenance_key']: hazard_layer.source(),
provenance_hazard_layer_id['provenance_key']: hazard_layer.id(),
provenance_analysis_question['provenance_key']:
get_analysis_question(hazard, exposure),
provenance_aggregation_keywords['provenance_key']: None,
provenance_exposure_keywords['provenance_key']:
deepcopy(exposure_layer.keywords),
provenance_hazard_keywords['provenance_key']: deepcopy(
hazard_layer.keywords),
}
# Set up impact function
impact_function = ImpactFunction()
impact_function.exposure = exposure_layer
impact_function.hazard = hazard_layer
status, message = impact_function.prepare()
self.assertEqual(PREPARE_SUCCESS, status, message)
status, message = impact_function.run()
self.assertEqual(ANALYSIS_SUCCESS, status, message)
self.maxDiff = None
expected_provenance.update({
provenance_action_checklist['provenance_key']:
impact_function.action_checklist(),
provenance_analysis_extent['provenance_key']:
impact_function.analysis_extent.exportToWkt(),
provenance_impact_function_name['provenance_key']:
impact_function.name,
provenance_impact_function_title['provenance_key']:
impact_function.title,
provenance_notes['provenance_key']: impact_function.notes(),
provenance_requested_extent['provenance_key']: impact_function.
requested_extent,
provenance_data_store_uri['provenance_key']: impact_function.
datastore.uri_path,
provenance_start_datetime['provenance_key']: impact_function.
start_datetime,
provenance_end_datetime['provenance_key']:
impact_function.end_datetime,
provenance_duration['provenance_key']: impact_function.duration
})
self.assertDictContainsSubset(
expected_provenance, impact_function.provenance)
output_layer_provenance_keys = [
provenance_layer_exposure_summary['provenance_key'],
provenance_layer_aggregate_hazard_impacted['provenance_key'],
provenance_layer_aggregation_summary['provenance_key'],
provenance_layer_analysis_impacted['provenance_key'],
provenance_layer_exposure_summary_table['provenance_key']
]
for key in output_layer_provenance_keys:
self.assertIn(key, impact_function.provenance.keys())