本文整理匯總了Python中reverend.thomas.Bayes.save方法的典型用法代碼示例。如果您正苦於以下問題:Python Bayes.save方法的具體用法?Python Bayes.save怎麽用?Python Bayes.save使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類reverend.thomas.Bayes
的用法示例。
在下文中一共展示了Bayes.save方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: untrained
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
def untrained(self, cr, uid, ids, context=None):
for id in ids:
record = self.read(cr, uid, id, ['category_id','description'])
if record['description']:
group_obj = self.pool.get('crm.bayes.group')
cat_obj = self.pool.get('crm.bayes.categories')
cat_rec = cat_obj.read(cr, uid, record['category_id'][0],[])
guesser = Bayes()
data = ""
for rec in group_obj.browse(cr, uid, [cat_rec['group_id'][0]]):
if rec['train_data']:
data += rec['train_data']
if data :
myfile = file(file_path+"crm_bayes.bay", 'w')
myfile.write(data)
myfile.close()
guesser.load(file_path+"crm_bayes.bay")
guesser.untrain(cat_rec['name'],record['description'])
guesser.save(file_path+"crm_bayes.bay")
myfile = file(file_path+"crm_bayes.bay", 'r')
data= ""
for fi in myfile.readlines():
data += fi
group_obj.write(cr, uid, cat_rec['group_id'][0], {'train_data': data})
cat_obj.write(cr, uid, record['category_id'][0], {'train_messages':int(cat_rec['train_messages']) - 1 })
cr.execute("select sum(train_messages) as tot_train,sum(guess_messages) as tot_guess from crm_bayes_categories where group_id=%d"% cat_rec['group_id'][0])
rec = cr.dictfetchall()
if rec[0]['tot_guess']:
percantage = float(rec[0]['tot_guess'] *100) / float(rec[0]['tot_guess'] + rec[0]['tot_train'])
else :
percantage = 0.0
group_obj.write(cr, uid, cat_rec['group_id'][0], {'train_data': data,'automate_test':percantage})
self.write(cr, uid, id, {'state_bayes':'untrained'})
return True
示例2: retrain
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
def retrain(request):
# Retrain your brain
user = User.objects.get(user=request.user)
posts = Post.objects.filter(user=user)
bayes = Brain.objects.get(user=user)
brain = Bayes()
#brain.loads(base64.decodestring(bayes.data))
tagcount = 0
# retrain the brain based on existing tags
for post in posts:
print post.title, "::",
for tag in post.tags.all():
text = "%s %s %s" % (post.title, post.author, post.summary)
brain.train(tag, text)
tagcount += 1
print tag,
print
brain.save('%s.db' % user)
bayes.data = base64.encodestring(brain.saves())
bayes.save()
message = 'Found %s tags' % tagcount
params = {'Messages': [message,]}
return response(request, 'mainapp/index.html', params)
示例3: treinar
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
def treinar():
print """>>> Carregando categorias..."""
CATEGORIAS = os.listdir('./data')
if '.svn' in CATEGORIAS:
CATEGORIAS.remove('.svn')
print ">>> Instanciando treinador\n"
guesser = Bayes()
try:
for categoria in CATEGORIAS:
print ">>> Treinando categoria %s" % categoria
arquivos = os.listdir("%s/%s" % (CAMINHO_CATEGORIAS, categoria))
if '.svn' in arquivos:
arquivos.remove('.svn')
for arquivo in arquivos:
arquivo = open('%s/%s/%s' % (CAMINHO_CATEGORIAS, categoria, arquivo), 'r')
texto = arquivo.read()
guesser.train(categoria, texto)
print "\n>>> Salvando base de conhecimento...\n"
guesser.save("conhecimento.bay")
print "Voil?!\n"
except:
print "N?o foi poss?vel treinar a base"
示例4: train
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
def train(self,bucket,words):
"""
Nominate a bucket to which the words apply, and train accordingly
"""
if bucket != "" and words != "":
try:
Bayes.train(self,bucket,words)
Bayes.save(self,self.brain)
except:
print "Failed to learn"
else:
return None
示例5: __init__
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
def __init__(self,name):
Bayes.__init__(self)
self.brain = name + '.bay'
try:
Bayes.load(self,self.brain)
print "[Bayes] Brain loaded ok"
except:
print "[Alert] Failed to load bayesian brain - %s, creating it now" % self.brain
Bayes.save(self,self.brain)
Bayes.load(self,self.brain)
示例6: action_train
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
def action_train(self, cr, uid, ids, context=None):
cat_obj = self.pool.get('crm.bayes.categories')
group_obj = self.pool.get('crm.bayes.group')
message_obj = self.pool.get('crm.bayes.test.guess')
for id in ids:
cat_id = self.read(cr, uid, id, ['category_id','name'])
cat_id = cat_id[0]['category_id']
if result :
max_list = max(result, key=lambda k: k[1])
if cat_id:
cat_guess_msg = cat_obj.read(cr, uid, cat_id, ['train_messages'])
cat_obj.write(cr, uid, cat_id, {'train_messages' :cat_guess_msg['train_messages'] + 1})
if max_list[1] > 0 and not cat_id:
cat_id = cat_obj.search(cr, uid, [('name','=',max_list[0])])[0]
cat_guess_msg = cat_obj.read(cr, uid, cat_id, ['guess_messages'])
cat_obj.write(cr, uid, cat_id, {'guess_messages' :cat_guess_msg['guess_messages'] + 1})
self.write(cr, uid, ids, {'category_id':cat_id})
if cat_id :
cat_rec = cat_obj.read(cr, uid, cat_id, [])
guesser = Bayes()
data = ""
for rec in group_obj.browse(cr, uid, [cat_rec['group_id'][0]]):
if rec['train_data']:
data += rec['train_data']
if data :
myfile = file(file_path+"crm_bayes.bay", 'w')
myfile.write(data)
myfile.close()
guesser.load(file_path+"crm_bayes.bay")
guesser.train(cat_rec['name'], message_obj.read(cr, uid, id)[0]['name'])
guesser.save(file_path+"crm_bayes.bay")
myfile = file(file_path+"crm_bayes.bay", 'r')
data=""
for fi in myfile.readlines():
data += fi
cr.execute("select sum(train_messages) as tot_train,sum(guess_messages) as tot_guess from crm_bayes_categories where group_id=%d"% cat_rec['group_id'][0])
rec = cr.dictfetchall()
if not rec[0]['tot_guess']:
rec[0]['tot_guess'] =0
percantage = float(rec[0]['tot_guess'] *100) / float(rec[0]['tot_guess'] + rec[0]['tot_train'])
group_obj.write(cr, uid, cat_rec['group_id'][0], {'train_data': data,'automate_test':percantage})
else :
raise osv.except_osv(_('Error !'),_('Please Select Category! '))
return {
'view_type': 'form',
"view_mode": 'form',
'res_model': 'crm.bayes.train.message',
'type': 'ir.actions.act_window',
'target':'new',
}
示例7: treino
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
def treino (self):
banco_do_jornal = Server()
genero=[banco_do_jornal[doc] for doc in GENEROS]
#treinando o reverend
from reverend.thomas import Bayes
guesser = Bayes()
guesser.train('artigo', ' '.join(genero[0][doc]['texto'] for doc in genero[0]))
guesser.train('resenha',' '.join(genero[6][doc]['texto'] for doc in genero[6]))
guesser.train('noticia',' '.join(genero[1][doc]['texto'] for doc in genero [1]))
guesser.train('cronica',' '.join(genero[5][doc]['texto']for doc in genero[5] if 'texto' in genero[5][doc] ))
guesser.train('horoscopo',' '.join(genero[3][doc]['texto']for doc in genero[3]))
guesser.train('manchete',' '.join(genero[2][doc]['titulo']for doc in genero[2]))
guesser.train('receita',' '.join(genero[4][doc]['texto']for doc in genero[4]))
guesser.save('my_guesser.bay')
variavel = guesser.guess('Cidad?o se descuidou e roubaram seu celular. Como era um executivo e n?o sabia mais viver sem celular, ficou furioso. Deu parte do roubo, de Quara?.? Pois ?.? Carol.? Hein?? Meu nome. ? Carol.? Ah. Voc?s s?o...? N?o, n?o. Nos conhecemos h? pouco.? Escute Carol. Eu trouxe uma encomenda para o Amleto. De Quara?. Uma pessegada, mas n?o me lembro do endere?o.')
print 'Resultado = ', variavel
示例8: treino
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
def treino (self):
banco_do_jornal = Server()
genero=[banco_do_jornal[doc] for doc in GENEROS]
#treinando o reverend
from reverend.thomas import Bayes
guesser = Bayes()
guesser.train('artigo', ' '.join(genero[0][doc]['texto'] for doc in genero[0]))
guesser.train('resenha',' '.join(genero[6][doc]['texto'] for doc in genero[6]))
guesser.train('noticia',' '.join(genero[1][doc]['texto'] for doc in genero [1]))
guesser.train('cronica',' '.join(genero[5][doc]['texto']for doc in genero[5] if 'texto' in genero[5][doc] ))
guesser.train('horoscopo',' '.join(genero[3][doc]['texto']for doc in genero[3]))
guesser.train('manchete',' '.join(genero[2][doc]['titulo']for doc in genero[2]))
guesser.train('receita',' '.join(genero[4][doc]['texto']for doc in genero[4]))
guesser.save('my_guesser.bay')
variavel = guesser.guess('Bolo de chocolate :ingredientes : 6 ovos, 2 xicaras de farinha, 1 colher de achocolatado, 1 lata de leite condensado, 2 copos de leite e 3 colheres de açucar')
print 'Resultado = ', variavel
示例9: get_db
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
def get_db(private_path, username):
path = os.path.join(os.path.join(private_path, username), 'spam.bayes')
guesser = Bayes()
# load the spam DB
try:
guesser.load(path)
except IOError:
print "Creating a new spam filter database"
parent_directory = os.path.dirname(path)
if not os.path.isdir(parent_directory):
os.makedirs(parent_directory)
guesser.save(path)
return guesser, path
示例10: treino
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
def treino (self):
banco_do_jornal = Server()
genero=[banco_do_jornal[doc] for doc in GENEROS]
#dicionários
dicionario_artigo={'enunciados de opiniao':'eu acredito''eu acho''nós entendemos que'}
dicionario_resenha={'auxiliar modal':'pode''deve','lexico':'filme''peça''livro''artista'}
dicionario_horoscopo={'lexico':'signo''peixes''áries''capricórnio''escorpião''cancer''gêmeos''touro''libra''sargitário''aquario''planeta''mercurio''vênus''marte''jupter''saturno''urano''netuno''ascendente''amor''saúde''trabalho''carta''sorte''dinheiro'}
dicionario_noticia={'marcadores de data':'janeiro''fevereiro''março''abril''maio''junho''julho''agosto''setembro''outubro''novembro''dezenbro'}
#treinando o reverend
from reverend.thomas import Bayes
guesser = Bayes()
guesser.train('artigo', ' '.join(genero[0][doc]['texto'] for doc in genero[0]) )
guesser.train('resenha',' '.join(genero[6][doc]['texto'] for doc in genero[6]))
guesser.train('noticia',' '.join(genero[1][doc]['texto'] for doc in genero [1]))
guesser.train('cronica',' '.join(genero[5][doc]['texto']for doc in genero[5] if 'texto' in genero[5][doc] ))
guesser.train('horoscopo',' '.join(genero[3][doc]['texto']for doc in genero[3]))
guesser.train('manchete',' '.join(genero[2][doc]['titulo']for doc in genero[2]))
guesser.train('receita',' '.join(genero[4][doc]['texto']for doc in genero[4]))
guesser.save('my_guesser.bay')
variavel = guesser.guess('Lía, Claudia e Dourado se enfrentam no oitavo paredão do BBB10, que acontecerá nesta terça (2)Lia foi a escolha do líder Michel, que justificou que sua opinião vem sendo formada ao longo do jogo. Cacau foi eliminada, pois foram 80% dos votos contra ela, então ela saiu, muitas pessoas não queriam que ela saisse mais foram os votos que decidiram a derrota da cacau (Cláudia)')
print 'Resultado = ', variavel
示例11: Bayes
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
from reverend.thomas import Bayes
guesser = Bayes()
guesser.train('french', 'le la les du un une je il elle de en')
guesser.train('german', 'der die das ein eine')
guesser.train('spanish', 'el uno una las de la en')
guesser.train('english', 'the it she he they them are were to')
guesser.guess('they went to el cantina')
guesser.guess('they were flying planes')
guesser.train('english', 'the rain in spain falls mainly on the plain')
guesser.save('my_guesser.bay')
示例12: Bayes
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
from reverend.thomas import Bayes
guesser = Bayes()
f = open("spam.log",'r')
for line in f:
guesser.train('spam', line.strip())
f = open("notspam.log",'r')
for line in f:
guesser.train('notspam', line.strip())
guesser.save('spam.bay')
示例13: __init__
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
class BayesianClassifier:
POSITIVE = POSITIVE
NEGATIVE = NEGATIVE
NEUTRAL = NEUTRAL
THRESHHOLD = 0.1
guesser = None
def __init__(self):
self.guesser = Bayes()
def train(self, example_tweets):
for t in example_tweets:
self.guesser.train(t.sentiment, t.text)
self.guesser.train(POSITIVE, "cool")
self.guesser.train(POSITIVE, "Woo")
self.guesser.train(POSITIVE, "quite amazing")
self.guesser.train(POSITIVE, "thks")
self.guesser.train(POSITIVE, "looking forward to")
self.guesser.train(POSITIVE, "damn good")
self.guesser.train(POSITIVE, "frickin ruled")
self.guesser.train(POSITIVE, "frickin rules")
self.guesser.train(POSITIVE, "Way to go")
self.guesser.train(POSITIVE, "cute")
self.guesser.train(POSITIVE, "comeback")
self.guesser.train(POSITIVE, "not suck")
self.guesser.train(POSITIVE, "prop")
self.guesser.train(POSITIVE, "kinda impressed")
self.guesser.train(POSITIVE, "props")
self.guesser.train(POSITIVE, "come on")
self.guesser.train(POSITIVE, "congratulation")
self.guesser.train(POSITIVE, "gtd")
self.guesser.train(POSITIVE, "proud")
self.guesser.train(POSITIVE, "thanks")
self.guesser.train(POSITIVE, "can help")
self.guesser.train(POSITIVE, "thanks!")
self.guesser.train(POSITIVE, "pumped")
self.guesser.train(POSITIVE, "integrate")
self.guesser.train(POSITIVE, "really like")
self.guesser.train(POSITIVE, "loves it")
self.guesser.train(POSITIVE, "yay")
self.guesser.train(POSITIVE, "amazing")
self.guesser.train(POSITIVE, "epic flail")
self.guesser.train(POSITIVE, "flail")
self.guesser.train(POSITIVE, "good luck")
self.guesser.train(POSITIVE, "fail")
self.guesser.train(POSITIVE, "life saver")
self.guesser.train(POSITIVE, "piece of cake")
self.guesser.train(POSITIVE, "good thing")
self.guesser.train(POSITIVE, "hawt")
self.guesser.train(POSITIVE, "hawtness")
self.guesser.train(POSITIVE, "highly positive")
self.guesser.train(POSITIVE, "my hero")
self.guesser.train(POSITIVE, "yummy")
self.guesser.train(POSITIVE, "awesome")
self.guesser.train(POSITIVE, "congrats")
self.guesser.train(POSITIVE, "would recommend")
self.guesser.train(POSITIVE, "intellectual vigor")
self.guesser.train(POSITIVE, "really neat")
self.guesser.train(POSITIVE, "yay")
self.guesser.train(POSITIVE, "ftw")
self.guesser.train(POSITIVE, "I want")
self.guesser.train(POSITIVE, "best looking")
self.guesser.train(POSITIVE, "imrpessive")
self.guesser.train(POSITIVE, "positive")
self.guesser.train(POSITIVE, "thx")
self.guesser.train(POSITIVE, "thanks")
self.guesser.train(POSITIVE, "thank you")
self.guesser.train(POSITIVE, "endorse")
self.guesser.train(POSITIVE, "clearly superior")
self.guesser.train(POSITIVE, "superior")
self.guesser.train(POSITIVE, "really love")
self.guesser.train(POSITIVE, "woot")
self.guesser.train(POSITIVE, "w00t")
self.guesser.train(POSITIVE, "super")
self.guesser.train(POSITIVE, "wonderful")
self.guesser.train(POSITIVE, "leaning towards")
self.guesser.train(POSITIVE, "rally")
self.guesser.train(POSITIVE, "incredible")
self.guesser.train(POSITIVE, "the best")
self.guesser.train(POSITIVE, "is the best")
self.guesser.train(POSITIVE, "strong")
self.guesser.train(POSITIVE, "would love")
self.guesser.train(POSITIVE, "rally")
self.guesser.train(POSITIVE, "very quickly")
self.guesser.train(POSITIVE, "very cool")
self.guesser.train(POSITIVE, "absolutely love")
self.guesser.train(POSITIVE, "very exceptional")
self.guesser.train(POSITIVE, "so proud")
self.guesser.train(POSITIVE, "funny")
self.guesser.train(POSITIVE, "recommend")
self.guesser.train(POSITIVE, "so proud")
self.guesser.train(POSITIVE, "so great")
self.guesser.train(POSITIVE, "so cool")
self.guesser.train(POSITIVE, "cool")
self.guesser.train(POSITIVE, "wowsers")
self.guesser.train(POSITIVE, "plus")
self.guesser.train(POSITIVE, "liked it")
#.........這裏部分代碼省略.........
示例14: load_csv_to_bayes
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
for line in reader:
body = line[1]
if line[2] == "visible":
status = "visible"
else:
status = "moderated"
clean_body = re.sub("<[^>]*>","",body)
guesser.train(status, clean_body)
try:
guesser.load('dataset.dat')
except IOError as e:
load_csv_to_bayes('good.csv')
load_csv_to_bayes('bad.csv')
guesser.save('dataset.dat')
from flask import Flask, request
from flask import render_template
app = Flask(__name__)
@app.route("/moderate")
def moderate():
if request.args.has_key('callback'):
wrapper = request.args.get('callback')+"(%s)"
else:
wrapper = "%s"
results = guesser.guess(request.args.get('body'))
return wrapper % (json.dumps(results))
示例15: save
# 需要導入模塊: from reverend.thomas import Bayes [as 別名]
# 或者: from reverend.thomas.Bayes import save [as 別名]
def save(self):
"""
Save the brain to disk
"""
Bayes.save(self,self.brain)