當前位置: 首頁>>代碼示例>>Python>>正文


Python Table.columns方法代碼示例

本文整理匯總了Python中retriever.lib.models.Table.columns方法的典型用法代碼示例。如果您正苦於以下問題:Python Table.columns方法的具體用法?Python Table.columns怎麽用?Python Table.columns使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在retriever.lib.models.Table的用法示例。


在下文中一共展示了Table.columns方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]
    def download(self, engine=None, debug=False):
        Script.download(self, engine, debug)
        engine = self.engine
        files = ["Macroplot_data_Rev.txt", "Microplot_data.txt", "Site_variables.txt", "Species_list.txt"]
        engine.download_files_from_archive(self.urls["data"], files, filetype="zip")

        # Create table species
        engine.auto_create_table(Table('species', cleanup=self.cleanup_func_table),
                                 filename="Species_list.txt")
        engine.insert_data_from_file(engine.format_filename("Species_list.txt"))

        # Create table sites
        engine.auto_create_table(Table('sites', cleanup=self.cleanup_func_table),
                                 filename="Site_variables.txt")
        engine.insert_data_from_file(engine.format_filename("Site_variables.txt"))

        # Create table microplots
        table = Table('microplots')
        table.columns = [('record_id', ('pk-auto',)), ('SpCode', ('char', '30')), ('Count', ('ct-int',))]
        table.ct_names = ['BSP1', 'BSP2', 'BSP3', 'BSP4', 'BSP5', 'BSP6', 'BSP7', 'BSP8', 'BSP9',
                          'BSP10', 'BSP11', 'BSP12', 'BSP13', 'BSP14', 'BSP15', 'BSP16', 'BSP17',
                          'BSP18', 'BSP20', 'BSP21', 'BSP22', 'BSP23', 'BSP24', 'BSP25', 'BSP26',
                          'BSP27', 'BSP28', 'BSP29', 'BSP30', 'BSP31', 'BSP33', 'BSP34', 'BSP35',
                          'BSP36', 'BSP37', 'BSP41', 'BSP42', 'BSP43', 'BSP44', 'BSP45', 'BSP46',
                          'BSP47', 'BSP48', 'BSP49', 'BSP50', 'BSP51', 'BSP52', 'BSP53', 'BSP54',
                          'BSP55', 'BSP56', 'BSP57', 'BSP58', 'BSP59', 'BSP60', 'BSP61', 'BSP62',
                          'BSP63', 'BSP64', 'BSP65', 'BSP66', 'BSP67', 'BSP68', 'BSP69', 'BSP70',
                          'BSP71', 'BSP72', 'BSP73', 'BSP74', 'BSP75', 'BSP76', 'BSP78', 'BSP79',
                          'BSP80', 'BSP82', 'BSP83', 'BSP84', 'BSP85', 'BSP86', 'BSP87', 'BSP88',
                          'BSP89', 'BSP90', 'BSP91', 'BSP92', 'BSP93', 'BSP94', 'BSP95', 'BSP96',
                          'BSP97', 'BSP98', 'BSP99', 'BSP100', 'BSP101', 'BSP102', 'BSP104']
        table.ct_column = 'PlotID'
        engine.auto_create_table(table, filename="Microplot_data.txt")
        engine.insert_data_from_file(engine.format_filename("Microplot_data.txt"))

        # Create table microplots
        table = Table('macroplots')
        table.ct_names = ['TreeGirth1', 'TreeGirth2', 'TreeGirth3', 'TreeGirth4', 'TreeGirth5']
        table.ct_column = 'Tree'
        table.columns = [('record_id', ('pk-auto',)), ('PlotID', ('char', '20')), ('SpCode', ('char', '30')),
                         ('Girth', ('ct-int',))]
        engine.auto_create_table(table, filename="Macroplot_data_Rev.txt")
        engine.insert_data_from_file(engine.format_filename("Macroplot_data_Rev.txt"))
開發者ID:dmcglinn,項目名稱:retriever,代碼行數:45,代碼來源:forest_plots_wghats.py

示例2: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]
    def download(self, engine=None, debug=False):
        Script.download(self, engine, debug)
        engine = self.engine

        filename = 'Aquatic_animal_excretion_data.csv'
        tablename = 'aquatic_animals'

        table = Table(str(tablename), delimiter=',')
        table.columns = [
            ("index", ("pk-int",)),
            ("sourcenumber", ("int",)),
            ("sourcename", ("char",)),
            ("speciesname", ("char",)),
            ("speciescode", ("char",)),
            ("invert/vert", ("char",)),
            ("phylum", ("char",)),
            ("class", ("char",)),
            ("order", ("char",)),
            ("family", ("char",)),
            ("trophicgild", ("char",)),
            ("drymass", ("double",)),
            ("logdrymass", ("double",)),
            ("ecosystemtype", ("char",)),
            ("energysource", ("char",)),
            ("habitat", ("char",)),
            ("residentecosystem", ("char",)),
            ("temperature", ("double",)),
            ("nexcretionrate", ("double",)),
            ("pexcretionrate", ("double",)),
            ("lognexcretionrate", ("double",)),
            ("logpexcretionrate", ("double",)),
            ("incubationtime", ("double",)),
            ("nform", ("char",)),
            ("pform", ("char",)),
            ("bodyc", ("double",)),
            ("bodyn", ("double",)),
            ("bodyp", ("double",)),
            ("bodyc:n", ("double",)),
            ("bodyc:p", ("double",)),
            ("bodyn:p", ("double",)),
            ("bodydatasource", ("char",)),
            ("datasource", ("char",)),
            ("dataproviders", ("char",))]

        engine.table = table
        if not os.path.isfile(engine.format_filename(filename)):
            engine.download_files_from_archive(self.urls[tablename], [filename], filetype="zip")

        engine.create_table()
        engine.insert_data_from_file(engine.format_filename(str(filename)))
開發者ID:dmcglinn,項目名稱:retriever,代碼行數:52,代碼來源:aquatic_animal_excretion.py

示例3: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]
    def download(self, engine=None, debug=False):
        Script.download(self, engine, debug)

        engine = self.engine

        taxa = ('Plant', 'Animal')

        for tax in taxa:
            table = Table(tax.lower() + 's', delimiter=',', header_rows = 3, pk='record_id', contains_pk=True)

            columns =     [("record_id"             ,   ("pk-int",)     ),
                           ("station_id"            ,   ("int",)        ),
                           ("obs_date"              ,   ("char",)       ),
                           ("ind_id"                ,   ("int",)        ),
                           ("sci_name"              ,   ("char",)       ),
                           ("com_name"              ,   ("char",)       ),
                           ("kingdom"               ,   ("char",)       ),
                           ("pheno_cat"             ,   ("char",)       ),
                           ("pheno_name"            ,   ("char",)       ),
                           ("pheno_status"          ,   ("char",)       ),
                           ("lat"                   ,   ("double",)     ),
                           ("lon"                   ,   ("double",)     ),
                           ("elevation"             ,   ("int",)        ),
                           ("network_name"          ,   ("char",)       )]
            table.columns = columns

            engine.table = table
            engine.create_table()

            base_url = 'http://www.usanpn.org/getObs/observations/'
            years = range(2009, 2013)

            for year in years:
                if year == 2009 and tax == 'Animal': continue

                url = base_url + 'get%s%sDataNoDefinitions' % (year, tax)

                filename = '%s_%s.csv' % (tax, year)
                engine.download_file(url, filename)

                engine.insert_data_from_file(engine.find_file(filename))

        return engine
開發者ID:davharris,項目名稱:retriever,代碼行數:45,代碼來源:npn.py

示例4: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]
    def download(self, engine=None, debug=False):
        try:
            Script.download(self, engine, debug)

            engine = self.engine

            # Species table
            table = Table("species", cleanup=Cleanup(), contains_pk=True,
                          header_rows=6)

            table.columns=[("species_id", ("pk-int",) ),
                           ("AOU", ("int",) ),
                           ("english_common_name", ("char",50) ),
                           ("french_common_name", ("char",50) ),
                           ("spanish_common_name", ("char",50) ),
                           ("sporder", ("char",30) ),
                           ("family", ("char",30) ),
                           ("genus", ("char",30) ),
                           ("species", ("char",50) ),
                           ]
            table.fixed_width = [7,6,51,51,51,51,51,51,50]

            engine.table = table
            engine.create_table()
            engine.insert_data_from_url(self.urls["species"])

            # Routes table
            if not os.path.isfile(engine.format_filename("routes_new.csv")):
                engine.download_files_from_archive(self.urls["routes"],
                                                   ["routes.csv"])
                read = open(engine.format_filename("routes.csv"), "rb")
                write = open(engine.format_filename("routes_new.csv"), "wb")
                print "Cleaning routes data..."
                write.write(read.readline())
                for line in read:
                    values = line.split(',')
                    v = Decimal(values[5])
                    if  v > 0:
                        values[5] = str(v * Decimal("-1"))
                    write.write(','.join(str(value) for value in values))
                write.close()
                read.close()

            engine.auto_create_table(Table("routes", cleanup=Cleanup()),
                                     filename="routes_new.csv")

            engine.insert_data_from_file(engine.format_filename("routes_new.csv"))


            # Weather table
            if not os.path.isfile(engine.format_filename("weather_new.csv")):
                engine.download_files_from_archive(self.urls["weather"],
                                                   ["weather.csv"])
                read = open(engine.format_filename("weather.csv"), "rb")
                write = open(engine.format_filename("weather_new.csv"), "wb")
                print "Cleaning weather data..."
                for line in read:
                    values = line.split(',')
                    newvalues = []
                    for value in values:

                        if ':' in value:
                            newvalues.append(value.replace(':', ''))
                        elif value == "N":
                            newvalues.append(None)
                        else:
                            newvalues.append(value)
                    write.write(','.join(str(value) for value in newvalues))
                write.close()
                read.close()

            engine.auto_create_table(Table("weather", pk="RouteDataId", cleanup=Cleanup()),
                                     filename="weather_new.csv")
            engine.insert_data_from_file(engine.format_filename("weather_new.csv"))


            # Region_codes table
            table = Table("region_codes", pk=False, header_rows=11,
                          fixed_width=[11, 11, 30])
            def regioncodes_cleanup(value, engine):
                replace = {chr(225):"a", chr(233):"e", chr(237):"i", chr(243):"o"}
                newvalue = str(value)
                for key in replace.keys():
                    if key in newvalue:
                        newvalue = newvalue.replace(key, replace[key])
                return newvalue
            table.cleanup = Cleanup(regioncodes_cleanup)

            table.columns=[("countrynum"            ,   ("int",)        ),
                           ("regioncode"            ,   ("int",)        ),
                           ("regionname"            ,   ("char",30)     )]

            engine.table = table
            engine.create_table()

            engine.insert_data_from_url(self.urls["region_codes"])

            # Counts table
            table = Table("counts", pk=False, delimiter=',')
            table.columns=[("RouteDataID"           ,   ("int",)        ),
#.........這裏部分代碼省略.........
開發者ID:cotsog,項目名稱:deletedret,代碼行數:103,代碼來源:bbs50stop.py

示例5: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]
    def download(self, engine=None, debug=False):
        Script.download(self, engine, debug)
        engine = self.engine

        filename = 'vertnet_latest_mammals.csv'
        tablename = 'mammals'

        table = Table(str(tablename), delimiter=',')
        table.columns = [
            ("record_id", ("pk-auto",)),
            ("beginrecord", ("char",)),
            ("icode", ("char",)),
            ("title", ("char",)),
            ("citation", ("char",)),
            ("contact", ("char",)),
            ("email", ("char",)),
            ("emlrights", ("char",)),
            ("gbifdatasetid", ("char",)),
            ("gbifpublisherid", ("char",)),
            ("doi", ("char",)),
            ("migrator", ("char",)),
            ("networks", ("char",)),
            ("orgcountry", ("char",)),
            ("orgname", ("char",)),
            ("orgstateprovince", ("char",)),
            ("pubdate", ("char",)),
            ("source_url", ("char",)),
            ("iptrecordid", ("char",)),
            ("associatedmedia", ("char",)),
            ("associatedoccurrences", ("char",)),
            ("associatedorganisms", ("char",)),
            ("associatedreferences", ("char",)),
            ("associatedsequences", ("char",)),
            ("associatedtaxa", ("char",)),
            ("bed", ("char",)),
            ("behavior", ("char",)),
            ("catalognumber", ("char",)),
            ("continent", ("char",)),
            ("coordinateprecision", ("char",)),
            ("coordinateuncertaintyinmeters", ("char",)),
            ("country", ("char",)),
            ("countrycode", ("char",)),
            ("county", ("char",)),
            ("dateidentified", ("char",)),
            ("day", ("char",)),
            ("decimallatitude", ("char",)),
            ("decimallongitude", ("char",)),
            ("disposition", ("char",)),
            ("earliestageorloweststage", ("char",)),
            ("earliesteonorlowesteonothem", ("char",)),
            ("earliestepochorlowestseries", ("char",)),
            ("earliesteraorlowesterathem", ("char",)),
            ("earliestperiodorlowestsystem", ("char",)),
            ("enddayofyear", ("char",)),
            ("establishmentmeans", ("char",)),
            ("eventdate", ("char",)),
            ("eventid", ("char",)),
            ("eventremarks", ("char",)),
            ("eventtime", ("char",)),
            ("fieldnotes", ("char",)),
            ("fieldnumber", ("char",)),
            ("footprintspatialfit", ("char",)),
            ("footprintsrs", ("char",)),
            ("footprintwkt", ("char",)),
            ("formation", ("char",)),
            ("geodeticdatum", ("char",)),
            ("geologicalcontextid", ("char",)),
            ("georeferencedby", ("char",)),
            ("georeferenceddate", ("char",)),
            ("georeferenceprotocol", ("char",)),
            ("georeferenceremarks", ("char",)),
            ("georeferencesources", ("char",)),
            ("georeferenceverificationstatus", ("char",)),
            ("group", ("char",)),
            ("habitat", ("char",)),
            ("highergeography", ("char",)),
            ("highergeographyid", ("char",)),
            ("highestbiostratigraphiczone", ("char",)),
            ("identificationid", ("char",)),
            ("identificationqualifier", ("char",)),
            ("identificationreferences", ("char",)),
            ("identificationremarks", ("char",)),
            ("identificationverificationstatus", ("char",)),
            ("identifiedby", ("char",)),
            ("individualcount", ("char",)),
            ("island", ("char",)),
            ("islandgroup", ("char",)),
            ("latestageorhigheststage", ("char",)),
            ("latesteonorhighesteonothem", ("char",)),
            ("latestepochorhighestseries", ("char",)),
            ("latesteraorhighesterathem", ("char",)),
            ("latestperiodorhighestsystem", ("char",)),
            ("lifestage", ("char",)),
            ("lithostratigraphicterms", ("char",)),
            ("locality", ("char",)),
            ("locationaccordingto", ("char",)),
            ("locationid", ("char",)),
            ("locationremarks", ("char",)),
            ("lowestbiostratigraphiczone", ("char",)),
            ("materialsampleid", ("char",)),
#.........這裏部分代碼省略.........
開發者ID:goelakash,項目名稱:retriever,代碼行數:103,代碼來源:vertnet_mammals.py

示例6: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]
    def download(self, engine=None, debug=False):
        Script.download(self, engine, debug)

        engine = self.engine
        csv_files = []
        request_src = "http://www.data-retriever.org/"
        base_url = "http://www.usanpn.org/npn_portal/observations/getObservations.xml?start_date={startYear}&end_date={endYear_date}&request_src={request_src}"
        header_values = ["observation_id",
                         "update_datetime",
                         "site_id",
                         "latitude",
                         "longitude",
                         "elevation_in_meters",
                         "state",
                         "species_id",
                         "genus",
                         "species",
                         "common_name",
                         "kingdom",
                         "individual_id",
                         "phenophase_id",
                         "phenophase_description",
                         "observation_date",
                         "day_of_year",
                         "phenophase_status",
                         "intensity_category_id",
                         "intensity_value",
                         "abundance_value"
                         ]

        columns = [("record_id", ("pk-auto",)),
                   ("observation_id", ("int",)),  # subsequently refered to as "status record"
                   ("update_datetime", ("char",)),
                   ("site_id", ("int",)),
                   ("latitude", ("double",)),
                   ("longitude", ("double",)),
                   ("elevation_in_meters", ("char",)),
                   ("state", ("char",)),
                   ("species_id", ("int",)),
                   ("genus", ("char",)),
                   ("species", ("char",)),
                   ("common_name", ("char",)),
                   ("kingdom", ("char",)),  # skip kingdom
                   ("individual_id", ("char",)),
                   ("phenophase_id", ("int",)),
                   ("phenophase_description", ("char",)),
                   ("observation_date", ("char",)),
                   ("day_of_year", ("char",)),
                   ("phenophase_status", ("char",)),
                   ("intensity_category_id", ("char",)),
                   ("intensity_value", ("char",)),
                   ("abundance_value", ("char",))
                   ]

        start_date = datetime.date(2009, 1, 1)
        end_date = datetime.date.today()

        while start_date < end_date:
            to_date = start_date + datetime.timedelta(90)
            if to_date >= end_date:
                data_url = base_url.format(startYear=str(start_date), endYear_date=str(end_date),
                                           request_src=request_src)
            else:
                data_url = base_url.format(startYear=str(start_date), endYear_date=str(to_date),
                                           request_src=request_src)

            xml_file_name = '{}'.format(start_date) + ".xml"
            engine.download_file(data_url, xml_file_name)

            # Create csv files for 3 months
            csv_observation = '{}'.format(start_date) + ".csv"
            csv_files.append(csv_observation)
            csv_buff = open_fw(engine.format_filename(csv_observation))
            csv_writer = open_csvw(csv_buff)

            csv_writer.writerow(header_values)

            # Parse xml to read data
            file_read = ""
            fname = DATA_WRITE_PATH.strip('{dataset}') + 'NPN/' + xml_file_name
            with open(fname, 'r') as fp1:
                file_read = fp1.read()

            root = ET.fromstring(file_read)

            for elements in root:
                index_map = {val: i for i, val in enumerate(header_values)}
                diction = sorted(elements.attrib.items(), key=lambda pair: index_map[pair[0]])
                csv_writer.writerow([x[1] for x in diction])

            csv_buff.close()
            start_date = to_date + datetime.timedelta(1)

        # Create table
        table = Table('obsercations', delimiter=',', pk='record_id', contains_pk=True)
        table.columns = columns
        engine.table = table
        engine.create_table()
        for data_file in csv_files:
            engine.insert_data_from_file(engine.find_file(data_file))
#.........這裏部分代碼省略.........
開發者ID:KristinaRiemer,項目名稱:retriever,代碼行數:103,代碼來源:npn.py

示例7: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]
    def download(self, engine=None, debug=False):
        Script.download(self, engine, debug)
        reload(sys)
        if hasattr(sys, 'setdefaultencoding'):
            sys.setdefaultencoding("utf-8")

        self.engine.download_file(self.urls["GWDD"], "GlobalWoodDensityDatabase.xls")
        filename = os.path.basename("GlobalWoodDensityDatabase.xls")
        book = xlrd.open_workbook(self.engine.format_filename(filename))
        sh = book.sheet_by_index(1)
        rows = sh.nrows

        # Creating data files
        file_path = self.engine.format_filename("gwdd_data.csv")
        gwdd_data = open_fw(file_path)
        csv_writer = open_csvw(gwdd_data)
        csv_writer.writerow(["Number", "Family", "Binomial", "Wood_Density", "Region", "Reference_Number"])

        for index in range(1, rows):
            row = sh.row(index)
            # get each row and format the sell value.
            row_as_list = [to_str(column_value.value) for column_value in row]
            csv_writer.writerow(row_as_list)
        gwdd_data.close()

        table = Table("data", delimiter=",")
        table.columns = [("Number", ("pk-int",)),
                         ("Family", ("char",)),
                         ("Binomial", ("char",)),
                         ("Wood_Density", ("double",)),
                         ("Region", ("char",)),
                         ("Reference_Number", ("int",))]
        table.pk = 'Number'
        table.contains_pk = True

        self.engine.table = table
        self.engine.create_table()
        self.engine.insert_data_from_file(engine.format_filename(file_path))

        # Creating reference tale file
        file_path = self.engine.format_filename("gwdd_ref.csv")
        ref_file = open_fw(file_path)
        csv_writerd = open_csvw(ref_file)
        csv_writerd.writerow(["Reference_Number", "Reference"])
        sh = book.sheet_by_index(2)
        rows = sh.nrows
        for index in range(1, rows):
            row = sh.row(index)
            # get each row and format the sell value.
            row_as_list = [to_str(column_value.value, object_encoding=sys.stdout) for column_value in row]
            csv_writerd.writerow(row_as_list)
        ref_file.close()

        table = Table("reference", delimiter=",")
        table.columns = [("Reference_Number", ("pk-int",)), ("Reference", ("char",))]
        table.pk = 'Reference_Number'
        table.contains_pk = True
        self.engine.table = table
        self.engine.create_table()
        self.engine.insert_data_from_file(engine.format_filename(file_path))

        return self.engine
開發者ID:dmcglinn,項目名稱:retriever,代碼行數:64,代碼來源:wood_density.py

示例8: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]

#.........這裏部分代碼省略.........
                            else:
                                id_level = "genus"
                        else:
                            id_level = "species"
                            full_id = 1
                        tax.append((this_line["family"], 
                                    this_line["genus"], 
                                    this_line["species"].lower().replace('\\', '').replace('"', ''), 
                                    id_level, 
                                    str(full_id)))
                    except:
                        raise
                        pass                    
        
        tax = sorted(tax, key=lambda group: group[0] + " " + group[1] + " " + group[2])
        unique_tax = []
        tax_dict = dict()
        tax_count = 0
        
        # Get all unique families/genera/species
        for group in tax:
            if not (group in unique_tax):
                unique_tax.append(group)
                tax_count += 1
                tax_dict[group[0:3]] = tax_count
                if tax_count % 10 == 0:
                    msg = "Generating taxonomic groups: " + str(tax_count) + " / " + str(TAX_GROUPS)
                    sys.stdout.write(msg + "\b" * len(msg))
        print "Generating taxonomic groups: " + str(TAX_GROUPS) + " / " + str(TAX_GROUPS)
        
        
        # Create species table
        table = Table("species", delimiter=",")
        table.columns=[("species_id"            ,   ("pk-int",)    ),
                       ("family"                ,   ("char", )    ),
                       ("genus"                 ,   ("char", )    ),
                       ("species"               ,   ("char", )    ),
                       ("id_level"              ,   ("char", 10)    ),
                       ("full_id"               ,   ("bool",)       )]

        data = [','.join([str(tax_dict[group[:3]])] + ['"%s"' % g for g in group]) 
                for group in unique_tax]
        table.pk = 'species_id'
        table.contains_pk = True
        
        self.engine.table = table
        self.engine.create_table()
        self.engine.add_to_table(data)
        
        
        # Create stems table
        table = Table("stems", delimiter=",", contains_pk=False)
        table.columns=[("stem_id"               ,   ("pk-auto",)    ),
                       ("line"                  ,   ("int",)        ),
                       ("species_id"            ,   ("int",)        ),
                       ("site_code"             ,   ("char", 12)    ),
                       ("liana"                 ,   ("char", 10)    ),
                       ("stem"                  ,   ("double",)     )]
        stems = []
        counts = []
        for line in lines:
            try:
                liana = line["liana"]
            except KeyError:
                liana = ""
            species_info = [line["line"], 
開發者ID:imclab,項目名稱:retriever,代碼行數:70,代碼來源:gentry.py

示例9: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]
    def download(self, engine=None, debug=False):
        Script.download(self, engine, debug)
        engine = self.engine
        filenames = ['Aquatic_animal_excretion_data.csv',
                     'Aquatic_animal_excretion_variable_descriptions.csv']
        for file_paths in filenames:
            if not os.path.isfile(engine.format_filename(file_paths)):
                url = self.urls["aquatic_animals"]
                engine.download_files_from_archive(url, filenames, "zip")

        # processing Aquatic_animal_excretion_data.csv
        filename = 'Aquatic_animal_excretion_data.csv'
        tablename = 'aquatic_animals'
        table = Table(str(tablename), delimiter=',')
        table.columns = [
            ("index", ("pk-int",)),
            ("sourcenumber", ("int",)),
            ("sourcename", ("char",)),
            ("speciesname", ("char",)),
            ("speciescode", ("char",)),
            ("invert/vert", ("char",)),
            ("phylum", ("char",)),
            ("class", ("char",)),
            ("order", ("char",)),
            ("family", ("char",)),
            ("trophicgild", ("char",)),
            ("drymass", ("double",)),
            ("logdrymass", ("double",)),
            ("ecosystemtype", ("char",)),
            ("energysource", ("char",)),
            ("habitat", ("char",)),
            ("residentecosystem", ("char",)),
            ("temperature", ("double",)),
            ("nexcretionrate", ("double",)),
            ("pexcretionrate", ("double",)),
            ("lognexcretionrate", ("double",)),
            ("logpexcretionrate", ("double",)),
            ("incubationtime", ("double",)),
            ("nform", ("char",)),
            ("pform", ("char",)),
            ("bodyc", ("double",)),
            ("bodyn", ("double",)),
            ("bodyp", ("double",)),
            ("bodyc:n", ("double",)),
            ("bodyc:p", ("double",)),
            ("bodyn:p", ("double",)),
            ("bodydatasource", ("char",)),
            ("datasource", ("char",)),
            ("dataproviders", ("char",))]
        engine.table = table
        engine.create_table()
        engine.insert_data_from_file(engine.format_filename(str(filename)))

        # processing Aquatic_animal_excretion_variable_descriptions.csv
        filename = 'Aquatic_animal_excretion_variable_descriptions.csv'
        tablename = 'variable_descriptions'
        table = Table(str(tablename), delimiter=',')
        table.columns = [
            ("Column", ("char",)),
            ("Variable", ("char",)),
            ("Description", ("char",)),
            ("Data Class", ("char",)),
            ("Units", ("char",)),
            ("Minimum_value", ("char",)),
            ("Maximum_value", ("char",)),
            ("Possible_values", ("char",)),
            ("Missing_data_symbol", ("char",)),
            ("Notes", ("char",))]
        engine.table = table
        engine.create_table()
        engine.insert_data_from_file(engine.format_filename(str(filename)))
開發者ID:henrykironde,項目名稱:retriever,代碼行數:73,代碼來源:aquatic_animal_excretion.py

示例10: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]

#.........這裏部分代碼省略.........
                        if len(this_line["species"]) < 3:
                            if len(this_line["genus"]) < 3:
                                id_level = "family"
                            else:
                                id_level = "genus"
                        else:
                            id_level = "species"
                            full_id = 1
                        tax.append((this_line["family"],
                                    this_line["genus"],
                                    this_line["species"],
                                    id_level,
                                    str(full_id)))
                    except:
                        raise
                        pass

        tax = sorted(tax, key=lambda group: group[0] + " " + group[1] + " " + group[2])
        unique_tax = []
        tax_dict = {}
        tax_count = 0

        # Get all unique families/genera/species
        print("\n")
        for group in tax:
            if not (group in unique_tax):
                unique_tax.append(group)
                tax_count += 1
                tax_dict[group[0:3]] = tax_count
                if tax_count % 10 == 0:
                    msg = "Generating taxonomic groups: " + str(tax_count) + " / " + str(TAX_GROUPS)
                    sys.stdout.flush()
                    sys.stdout.write(msg + "\b" * len(msg))
        print("\n")
        # Create species table
        table = Table("species", delimiter=",")
        table.columns=[("species_id"            ,   ("pk-int",)    ),
                       ("family"                ,   ("char", )    ),
                       ("genus"                 ,   ("char", )    ),
                       ("species"               ,   ("char", )    ),
                       ("id_level"              ,   ("char", 10)    ),
                       ("full_id"               ,   ("int",)       )]

        data = [[str(tax_dict[group[:3]])] + ['"%s"' % g for g in group]
                for group in unique_tax]
        table.pk = 'species_id'
        table.contains_pk = True

        self.engine.table = table
        self.engine.create_table()
        self.engine.add_to_table(data)

        # Create stems table
        table = Table("stems", delimiter=",")
        table.columns=[("stem_id"               ,   ("pk-auto",)    ),
                       ("line"                  ,   ("int",)        ),
                       ("species_id"            ,   ("int",)        ),
                       ("site_code"             ,   ("char", 12)    ),
                       ("liana"                 ,   ("char", 10)    ),
                       ("stem"                  ,   ("double",)     )]
        stems = []
        counts = []
        for line in lines:
            try:
                liana = line["liana"]
            except KeyError:
                liana = ""
            species_info = [line["line"],
                            tax_dict[(line["family"],
                                      line["genus"],
                                      line["species"])],
                            line["site"],
                            liana
                            ]
            try:
                counts.append([value for value in species_info + [line["count"]]])
            except KeyError:
                pass

            for i in line["stems"]:
                stem = species_info + [str(i)]
                stems.append(stem)

        self.engine.table = table
        self.engine.create_table()
        self.engine.add_to_table(stems)

        # Create counts table
        table = Table("counts", delimiter=",", contains_pk=False)
        table.columns=[("count_id"              ,   ("pk-auto",)    ),
                       ("line"                  ,   ("int",)        ),
                       ("species_id"            ,   ("int",)        ),
                       ("site_code"             ,   ("char", 12)    ),
                       ("liana"                 ,   ("char", 10)    ),
                       ("count"                 ,   ("double",)     )]
        self.engine.table = table
        self.engine.create_table()
        self.engine.add_to_table(counts)

        return self.engine
開發者ID:goelakash,項目名稱:retriever,代碼行數:104,代碼來源:gentry_forest_transects.py

示例11: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]
 def download(self, engine=None, debug=False):
     Script.download(self, engine, debug)
     engine = self.engine
     filename = "database.csv"
     tablename = "predicts_main"
     table = Table(str(tablename), delimiter=',')
     table.columns = [("Source_ID", ("char",)),
                      ("Reference", ("char",)),
                      ("Study_number", ("int",)),
                      ("Study_name", ("char",)),
                      ("SS", ("char",)),
                      ("Diversity_metric", ("char",)),
                      ("Diversity_metric_unit", ("char",)),
                      ("Diversity_metric_type", ("char",)),
                      ("Diversity_metric_is_effort_sensitive", ("char",)),
                      ("Diversity_metric_is_suitable_for_Chao", ("char",)),
                      ("Sampling_method", ("char",)),
                      ("Sampling_effort_unit", ("char",)),
                      ("Study_common_taxon", ("char",)),
                      ("Rank_of_study_common_taxon", ("char",)),
                      ("Site_number", ("int",)),
                      ("Site_name", ("char",)),
                      ("Block", ("char",)),
                      ("SSS", ("char",)),
                      ("SSB", ("char",)),
                      ("SSBS", ("char",)),
                      ("Sample_start_earliest", ("char",)),
                      ("Sample_end_latest", ("char",)),
                      ("Sample_midpoint", ("char",)),
                      ("Sample_date_resolution", ("char",)),
                      ("Max_linear_extent_metres", ("double",)),
                      ("Habitat_patch_area_square_metres", ("double",)),
                      ("Sampling_effort", ("double",)),
                      ("Rescaled_sampling_effort", ("double",)),
                      ("Habitat_as_described", ("char",)),
                      ("Predominant_land_use", ("char",)),
                      ("Source_for_predominant_land_use", ("char",)),
                      ("Use_intensity", ("char",)),
                      ("Km_to_nearest_edge_of_habitat", ("double",)),
                      ("Years_since_fragmentation_or_conversion", ("double",)),
                      ("Transect_details", ("char",)),
                      ("Coordinates_method", ("char",)),
                      ("Longitude", ("double",)),
                      ("Latitude", ("double",)),
                      ("Country_distance_metres", ("double",)),
                      ("Country", ("char")),
                      ("UN_subregion", ("char",)),
                      ("UN_region", ("char",)),
                      ("Ecoregion_distance_metres", ("double",)),
                      ("Ecoregion", ("char",)),
                      ("Biome", ("char",)),
                      ("Realm", ("char",)),
                      ("Hotspot", ("char",)),
                      ("Wilderness_area", ("char",)),
                      ("N_samples", ("double",)),
                      ("Taxon_number", ("double",)),
                      ("Taxon_name_entered", ("char",)),
                      ("Indication", ("char",)),
                      ("Parsed_name", ("char",)),
                      ("Taxon", ("char",)),
                      ("COL_ID", ("double",)),
                      ("Name_status", ("char",)),
                      ("Rank", ("char",)),
                      ("Kingdom", ("char",)),
                      ("Phylum", ("char",)),
                      ("Class", ("char",)),
                      ("Order", ("char",)),
                      ("Family", ("char",)),
                      ("Genus", ("char",)),
                      ("Species", ("char",)),
                      ("Best_guess_binomial", ("char",)),
                      ("Higher_taxa", ("char",)),
                      ("Higher_taxon", ("char",)),
                      ("Measurement", ("double",)),
                      ("Effort_corrected_measurement", ("double",))]
     engine.table = table
     if not os.path.isfile(engine.format_filename(filename)):
         engine.download_files_from_archive(self.urls["PREDICTS"],
                                            [filename],
                                            "zip",
                                            False,
                                            "download.zip")
     engine.create_table()
     engine.insert_data_from_file(engine.format_filename(str(filename)))
開發者ID:KristinaRiemer,項目名稱:retriever,代碼行數:86,代碼來源:predicts.py

示例12: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]
    def download(self, engine=None, debug=False):
        Script.download(self, engine, debug)

        self.engine.download_file(self.urls["GWDD"], "GlobalWoodDensityDatabase.xls")
        filename = os.path.basename("GlobalWoodDensityDatabase.xls")

        book = xlrd.open_workbook(self.engine.format_filename(filename))
        sh = book.sheet_by_index(1)
        rows = sh.nrows

        #Creating data table
        lines = []
        for i in range(1, rows):
            row = sh.row(i)
            if not all(Excel.empty_cell(cell) for cell in row):
                this_line = {}
                def format_value(s):
                    s = Excel.cell_value(s)
                    return str(s).title().replace("\\", "/").replace('"', '')
                for num, label in enumerate(["Number", "Family", "Binomial", "Wood_Density",
                            "Region", "Reference_Number"]):
                    this_line[label] = format_value(row[num])
                lines.append(this_line)

        table = Table("data", delimiter="\t")
        table.columns=[("Number"                ,   ("pk-int",) ),
                       ("Family"                ,   ("char",)   ),
                       ("Binomial"              ,   ("char",)   ),
                       ("Wood_Density"          ,   ("double",) ),
                       ("Region"                ,   ("char",)   ),
                       ("Reference_Number"      ,   ("int",)    )]
        table.pk = 'Number'
        table.contains_pk = True

        gwdd = []
        for line in lines:
            gwdd_data = [line["Number"],
                         line["Family"],
                         line["Binomial"],
                         line["Wood_Density"],
                         line["Region"],
                         line["Reference_Number"]]
            gwdd.append(gwdd_data)

        data = ['\t'.join(gwdd_line) for gwdd_line in gwdd]
        self.engine.table = table
        self.engine.create_table()
        self.engine.add_to_table(data)

        #Creating reference table
        lines = []
        sh = book.sheet_by_index(2)
        rows = sh.nrows
        for i in range(1, rows):
            row = sh.row(i)
            if not all(Excel.empty_cell(cell) for cell in row):
                this_line = {}
                def format_value(s):
                    s = Excel.cell_value(s)
                    return str(s).title().replace("\\", "/").replace('"', '')
                for num, label in enumerate(["Reference_Number", "Reference"]):
                    this_line[label] = format_value(row[num])
                lines.append(this_line)

        table = Table("reference", delimiter="\t")
        table.columns=[("Reference_Number"  ,   ("pk-int",) ),
                       ("Reference"         ,   ("char",)   )]
        table.pk = 'Reference_Number'
        table.contains_pk = True

        gwdd = []
        for line in lines:
            gwdd_ref = [line["Reference_Number"],
                        line["Reference"]]
            gwdd.append(gwdd_ref)

        data = ['\t'.join(gwdd_line) for gwdd_line in gwdd]
        self.engine.table = table
        self.engine.create_table()
        self.engine.add_to_table(data)
        
        return self.engine
開發者ID:cotsog,項目名稱:deletedret,代碼行數:84,代碼來源:gwdd.py

示例13: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]
    def download(self, engine=None, debug=False):
        Script.download(self, engine, debug)
        engine = self.engine

        engine.download_files_from_archive(self.urls["capture"], archive_type="zip")

        # Convert xlsx to csv.
        xlsx_file = self.engine.format_filename("DSD_FI_CAPTURE.xlsx")
        file_path = self.engine.format_filename("DSD_CAPTURE.csv")
        book = xlrd.open_workbook(xlsx_file)
        sh = book.sheet_by_index(0)
        rows = sh.nrows

        # Creating data files
        new_data = open_fw(file_path)
        csv_writer = open_csvw(new_data)
        csv_writer.writerow(["Order", "Concept_id",
                             "Role_Type", "Codelist_id",
                             "Codelist_Code_id", "Description"])

        for index in range(2, rows):
            row = sh.row(index)
            # Get each row and format the sell value.
            # Data starts at index 2
            row_as_list = [to_str(column_value.value) for column_value in row]
            csv_writer.writerow(row_as_list)
        new_data.close()

        file_names = [
            ('CL_FI_UNIT.csv', 'unit_data'),
            ('CL_FI_WATERAREA_GROUPS.csv', 'waterarea_groups'),
            ('DSD_CAPTURE.csv', 'dsd_capture_data'),
            ('CL_FI_SPECIES_GROUPS.csv', 'species_group')
        ]

        for (filename, tablename) in file_names:
            data_path = self.engine.format_filename(filename)
            table = Table(tablename, delimiter=',', cleanup=self.cleanup_func_table)
            self.engine.auto_create_table(table, filename=filename)
            self.engine.insert_data_from_file(data_path)

        # File CL_FI_COUNTRY_GROUPS.csv has multi encoding
        file_names_encoded = [
            ('CL_FI_COUNTRY_GROUPS.csv', 'country_groups'),
        ]
        for (filename, tablename) in file_names_encoded:
            data_path = self.engine.format_filename(filename)
            table = Table(tablename, delimiter=',', cleanup=self.cleanup_func_table)
            table.columns = [('UN_Code', ('int', )),
                             ('Identifier', ('int', )),
                             ('ISO2_Code', ('char', '5')),
                             ('ISO3_Code', ('char', '5')),
                             ('Name_En', ('char', '50')),
                             ('Name_Fr', ('char', '50')),
                             ('Name_Es', ('char', '50')),
                             ('Name_Ar', ('char', '120')),
                             ('Name_Cn', ('char', '90')),
                             ('Name_Ru', ('char', '150')),
                             ('Official_Name_En', ('char', '70')),
                             ('Official_Name_Fr', ('char', '70')),
                             ('Official_Name_Es', ('char', '70')),
                             ('Official_Name_Ar', ('char', '1100')),
                             ('Official_Name_Cn', ('char', '70')),
                             ('Official_Name_Ru', ('char', '130')),
                             ('Continent_Group', ('char', '15')),
                             ('EcoClass_Group', ('char', '50')),
                             ('GeoRegion_Group', ('char', '30'))]
            self.engine.auto_create_table(table, filename=filename)
            self.engine.insert_data_from_file(data_path)

            # TS_FI_CAPTURE is
            file_names_encoded = [
                ('TS_FI_CAPTURE.csv', 'ts_capture_data',)
            ]
            for (filename, tablename) in file_names_encoded:
                data_path = self.engine.format_filename(filename)
                table = Table(tablename, delimiter=',', cleanup=self.cleanup_func_table)
                table.columns = [('COUNTRY', ('int', )),
                                 ('FISHING_AREA', ('int', )),
                                 ('SPECIES', ('char', '10')),
                                 ('YEAR', ('int', )),
                                 ('UNIT', ('char', '5')),
                                 ('QUANTITY', ('double', )),
                                 ('SYMBOL', ('char', '4'))]
                self.engine.auto_create_table(table, filename=filename)
                self.engine.insert_data_from_file(data_path)
開發者ID:henrykironde,項目名稱:retriever,代碼行數:88,代碼來源:fao_global_capture_product.py

示例14: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]
    def download(self, engine=None, debug=False):
        Script.download(self, engine, debug)
        engine = self.engine
        engine.download_files_from_archive(self.urls["data"], ["Data_Files/Amniote_Database_Aug_2015.csv",
                                                               "Data_Files/Amniote_Database_References_Aug_2015.csv",
                                                               "Data_Files/Amniote_Range_Count_Aug_2015.csv"],
                                           filetype="zip")

        ct_column = 'trait'  # all tables use the same ct_column name

        # Create tables from Amniote_Database_Aug.csv and Amniote_Database_References_Aug_2015.csv
        # Both reference and main have the same headers

        ct_names = ['female_maturity_d', 'litter_or_clutch_size_n', 'litters_or_clutches_per_y', 'adult_body_mass_g',
                    'maximum_longevity_y', 'gestation_d', 'weaning_d', 'birth_or_hatching_weight_g', 'weaning_weight_g',
                    'egg_mass_g', 'incubation_d', 'fledging_age_d', 'longevity_y', 'male_maturity_d',
                    'inter_litter_or_interbirth_interval_y', 'female_body_mass_g', 'male_body_mass_g',
                    'no_sex_body_mass_g', 'egg_width_mm', 'egg_length_mm', 'fledging_mass_g', 'adult_svl_cm',
                    'male_svl_cm', 'female_svl_cm', 'birth_or_hatching_svl_cm', 'female_svl_at_maturity_cm',
                    'female_body_mass_at_maturity_g', 'no_sex_svl_cm', 'no_sex_maturity_d']

        # Create table main from Amniote_Database_Aug_2015.csv

        columns = [
            ('record_id', ('pk-auto',)), ('class', ('char', '20')), ('order', ('char', '20')),
            ('family', ('char', '20')), ('genus', ('char', '20')), ('species', ('char', '50')),
            ('subspecies', ('char', '20')), ('common_name', ('char', '400')), ('trait_value', ('ct-double',))]
        table_main = Table('main', delimiter=',', cleanup=self.cleanup_func_table)
        table_main.ct_column = ct_column
        table_main.ct_names = ct_names
        table_main.columns = columns
        engine.auto_create_table(table_main,
                                 filename="Amniote_Database_Aug_2015.csv")
        engine.insert_data_from_file(engine.format_filename("Amniote_Database_Aug_2015.csv"))

        # Create table reference from Amniote_Database_References_Aug_2015.csv
        reference_columns = [
            ('record_id', ('pk-auto',)), ('class', ('char', '20')), ('order', ('char', '20')),
            ('family', ('char', '20')), ('genus', ('char', '20')), ('species', ('char', '50')),
            ('subspecies', ('char', '20')), ('common_name', ('char', '400')), ('reference', ('ct-char',))]

        table_references = Table('references', delimiter=',', cleanup=self.cleanup_func_table)
        table_references.ct_column = ct_column
        table_references.ct_names = ct_names
        table_references.columns = reference_columns
        engine.auto_create_table(table_references,
                                 filename="Amniote_Database_References_Aug_2015.csv")
        engine.insert_data_from_file(engine.format_filename("Amniote_Database_References_Aug_2015.csv"))

        # Create table Range
        # This table has different values for headers from the above tables.
        range_ct_names = ["min_female_maturity", "max_female_maturity", "count_female_maturity", "min_litter_clutch_size",
                    "max_litter_clutch_size", "count_litter_clutch_size", "min_litters_clutches",
                    "max_litters_clutches", "count_litters_clutches", "min_adult_body_mass", "max_adult_body_mass",
                    "count_adult_body_mass", "min_maximum_longevity", "max_maximum_longevity",
                    "count_maximum_longevity", "min_gestation", "max_gestation", "count_gestation", "min_weaning",
                    "max_weaning", "count_weaning", "min_birth_hatching_weight", "max_birth_hatching_weight",
                    "count_birth_hatching_weight", "min_weaning_weight", "max_weaning_weight", "count_weaning_weight",
                    "min_egg_mass", "max_egg_mass", "count_egg_mass", "min_incubation", "max_incubation",
                    "count_incubation", "min_fledging_age", "max_fledging_age", "count_fledging_age",
                    "min_male_maturity", "max_male_maturity", "count_male_maturity",
                    "min_inter_litter_interbirth_interval", "max_inter_litter_interbirth_interval",
                    "count_inter_litter_interbirth_interval", "min_female_body_mass", "max_female_body_mass",
                    "count_female_body_mass", "min_male_body_mass", "max_male_body_mass", "count_male_body_mass",
                    "min_no_sex_body_mass", "max_no_sex_body_mass", "count_no_sex_body_mass", "min_egg_width",
                    "max_egg_width", "count_egg_width", "min_egg_length", "max_egg_length", "count_egg_length",
                    "min_fledging_mass", "max_fledging_mass", "count_fledging_mass", "min_adult_svl", "max_adult_svl",
                    "count_adult_svl", "min_male_svl", "max_male_svl", "count_male_svl", "min_female_svl",
                    "max_female_svl", "count_female_svl", "min_hatching_svl", "max_hatching_svl", "count_hatching_svl",
                    "min_female_svl_at_maturity", "max_female_svl_at_maturity", "count_female_svl_at_maturity",
                    "min_female_body_mass_at_maturity", "max_female_body_mass_at_maturity",
                    "count_female_body_mass_at_maturity", "min_no_sex_svl", "max_no_sex_svl", "count_no_sex_svl",
                    "min_no_sex_maturity", "max_no_sex_maturity", "count_no_sex_maturity"]
        range_columns = [
            ('record_id', ('pk-auto',)), ('classx', ('char', '20')), ('orderx', ('char', '20')),
            ('familyx', ('char', '20')), ('genus', ('char', '20')), ('species', ('char', '50')),
            ('subspecies', ('char', '20')), ('common_name', ('char', '400')), ('trait_value', ('ct-double',))]

        table_range = Table('range', delimiter=',', cleanup=self.cleanup_func_table)
        table_range.ct_column = ct_column
        table_range.ct_names = range_ct_names
        table_range.columns = range_columns
        engine.auto_create_table(table_range,
                                 filename="Amniote_Range_Count_Aug_2015.csv")
        engine.insert_data_from_file(engine.format_filename("Amniote_Range_Count_Aug_2015.csv"))
開發者ID:goelakash,項目名稱:retriever,代碼行數:87,代碼來源:amniote_life_hist.py

示例15: download

# 需要導入模塊: from retriever.lib.models import Table [as 別名]
# 或者: from retriever.lib.models.Table import columns [as 別名]
    def download(self, engine=None, debug=False):
        try:
            Script.download(self, engine, debug)
            
            engine = self.engine
            
            # Routes table            
            if not os.path.isfile(engine.format_filename("routes_new.csv")):
                engine.download_files_from_archive(self.urls["routes"],
                                                   ["routes.csv"])
                read = open(engine.format_filename("routes.csv"), "rb")
                write = open(engine.format_filename("routes_new.csv"), "wb")
                print "Cleaning routes data..."
                write.write(read.readline())
                for line in read:
                    values = line.split(',')
                    v = Decimal(values[5])
                    if  v > 0:
                        values[5] = str(v * Decimal("-1"))
                    write.write(','.join(str(value) for value in values))
                write.close()
                read.close()
                
            engine.auto_create_table(Table("routes", cleanup=Cleanup()), 
                                     filename="routes_new.csv")
                
            engine.insert_data_from_file(engine.format_filename("routes_new.csv"))

            
            # Weather table                
            if not os.path.isfile(engine.format_filename("weather_new.csv")):
                engine.download_files_from_archive(self.urls["weather"], 
                                                   ["weather.csv"])            
                read = open(engine.format_filename("weather.csv"), "rb")
                write = open(engine.format_filename("weather_new.csv"), "wb")
                print "Cleaning weather data..."
                for line in read:
                    values = line.split(',')
                    newvalues = []
                    for value in values:
                        
                        if ':' in value:
                            newvalues.append(value.replace(':', ''))
                        elif value == "N":
                            newvalues.append(None)
                        else:
                            newvalues.append(value)
                    write.write(','.join(str(value) for value in newvalues))
                write.close()
                read.close()
            
            engine.auto_create_table(Table("weather", pk="RouteDataId", cleanup=Cleanup()), 
                                     filename="weather_new.csv")
            engine.insert_data_from_file(engine.format_filename("weather_new.csv"))
            
            
            # Species table
            table = Table("species", pk=False, delimiter=',')
            
            table.columns=[("species_id"            ,   ("pk-auto",)        ),
                           ("AOU"                   ,   ("int",)            ),
                           ("genus"                 ,   ("char",30)         ),
                           ("species"               ,   ("char",50)         ),
                           ("subspecies"            ,   ("char",30)         ),
                           ("id_to_species"         ,   ("bool",)           )]
            
            engine.table = table
            engine.create_table()
            
            engine.download_file(self.urls["species"], "SpeciesList.txt")
            species_list = open(engine.format_filename("SpeciesList.txt"), "rb")
            for n in range(8):
                species_list.readline()
            
            rows = []
            for line in species_list:
                if line and len(line) > 273:
                    latin_name = line[273:].split()
                    if len(latin_name) < 2:
                        # If there's no species given, add "None" value
                        latin_name.append("None")
                    subspecies = ' '.join(latin_name[2:]) if len(latin_name) > 2 else "None"                    
                    id_to_species = "1" if latin_name[1] != "None" else "0"
                    if latin_name[1] == "sp.":
                        latin_name[1] = "None"
                        id_to_species = "0"
                    if ("x" in latin_name or "/" in latin_name
                        or "/" in subspecies or "or" in latin_name):
                        # Hybrid species or only identified to a group of species
                        latin_name[1] = ' '.join(latin_name[1:])
                        subspecies = "None"
                        id_to_species = "0"
                    
                    rows.append(','.join([
                                          line.split()[1], 
                                          latin_name[0],
                                          latin_name[1],
                                          subspecies,
                                          id_to_species
                                          ]))
#.........這裏部分代碼省略.........
開發者ID:imclab,項目名稱:retriever,代碼行數:103,代碼來源:bbs50stop.py


注:本文中的retriever.lib.models.Table.columns方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。