本文整理匯總了Python中rectangle.Rectangle.getArea方法的典型用法代碼示例。如果您正苦於以下問題:Python Rectangle.getArea方法的具體用法?Python Rectangle.getArea怎麽用?Python Rectangle.getArea使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類rectangle.Rectangle
的用法示例。
在下文中一共展示了Rectangle.getArea方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: update
# 需要導入模塊: from rectangle import Rectangle [as 別名]
# 或者: from rectangle.Rectangle import getArea [as 別名]
def update(viewAngleHorz):
print "update()"
# Get color image from camera
ret, img = camera.read() # img.shape 640x480 image
# Convert to hsv img
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Keep only green objects
# higher s = less white, higher v = less black
lowerGreen = np.array([70, 70, 180])
upperGreen = np.array([110, 130,255])
filteredGreen = cv2.inRange(hsv, lowerGreen, upperGreen)
# Filter out small objects
filteredGreen = cv2.morphologyEx(filteredGreen, cv2.MORPH_OPEN, np.ones((3, 3)))
# Find all contours, counter is vector of points that are connected to make up a shape
contours, hierarchy = cv2.findContours(filteredGreen, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Resetting values
foundHotTarget = False;
foundHorzTarget = False
# Parse contours, calculate distance and check if it's the hot target
for shape in contours:
target = Rectangle(*cv2.boundingRect(shape))
# Filter out small contours
if target.getArea() > 300 and target.getArea() < 10000:
# Compensate for horizontal view of the target
target.width = target.width / math.cos(viewAngle * math.PI / 180)
# If the width of the target is greater than its height then it's probably the hot target
if target.width >= target.height * 2.5:
foundHotTarget = True
distance = computeDistance(horizTarget.height, target.height)
if debugMode:
drawRect(img, target)
viewAngle = computeAngle(horizTarget.height, target.height, 228)
print "Distance: ", round(distance), ", Hot Target", viewAngle, viewAngleVert
# If the height of the target is greater than the its width its probably a vert target
if target.height >= target.width * 6:
foundHorzTarget = True
distance = computeDistance(vertTarget.height, target.height)
if debugMode:
drawRect(img, target)
viewAngle = computeAngle(vertTarget.height, target.height, 228)
print "Distance: ", round(distance), ", Vert Target", viewAngle, viewAngleVert
if debugMode:
cv2.imshow("color", img)
cv2.waitKey(10)
cv2.imshow("filtered", filteredGreen)
cv2.waitKey(10)
示例2: update
# 需要導入模塊: from rectangle import Rectangle [as 別名]
# 或者: from rectangle.Rectangle import getArea [as 別名]
def update(prefSideLeft, isDebug):
logging.debug("update() {} {}".format(isDebug, imgNameIndex))
# Get color image from camera
ret, img = camera.read() # img.shape 640x480 image
# Convert to hsv img
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Keep only green objects
# higher s = less white, higher v = less black
lowerGreen = np.array([70, 70, 180])
upperGreen = np.array([110, 130,255])
filteredGreen = cv2.inRange(hsv, lowerGreen, upperGreen)
# Filter out small objects
filteredGreen = cv2.morphologyEx(filteredGreen, cv2.MORPH_OPEN, np.ones((3, 3)))
# Find all contours, countours is vector of points that are connected to make up a shape
contours, hierarchy = cv2.findContours(filteredGreen, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Resetting foundHotTarget
global foundHotTarget
foundHotTarget = False;
# Parse contours, calculate distance and check if it's the hot target
for shape in contours:
target = Rectangle(*cv2.boundingRect(shape))
# Filter out small contours
if target.getArea() > 300 and target.getArea() < 10000:
# If the width of the target is greater than its height then it's probably the hot target
if target.width >= target.height * 2.5:
foundHotTarget = inPrefSide(target.x + (target.width / 2), prefSideLeft)
if isDebug:
drawRect(img, target)
viewAngle = computeAngle(horizTarget.height, target.height, distanceFromTarget)
logging.debug("Hot Target: " + str(foundHotTarget) + ", New Angle: " + str(viewAngle))
# Save img so we can analyze it
if isDebug:
saveImg(img)
示例3: main
# 需要導入模塊: from rectangle import Rectangle [as 別名]
# 或者: from rectangle.Rectangle import getArea [as 別名]
def main(x0, y0, x1, y1):
rect = Rectangle(int(x0), int(y0), int(x1), int(y1))
msg = 'For the rectangle with corners located at ('
msg += str(x0) + ', ' + str(y0) + ') and ('
msg += str(x1) + ', ' + str(y1) + '):\n'
print(msg)
msg = 'The length is ' + str(rect.getLength())
msg += ' and the height is ' + str(rect.getHeight()) + '.'
print(msg)
msg = 'The area is ' + str(rect.getArea()) + '.'
print(msg)
示例4: RectangleTest
# 需要導入模塊: from rectangle import Rectangle [as 別名]
# 或者: from rectangle.Rectangle import getArea [as 別名]
class RectangleTest(TestCase):
def setUp(self):
self.rectangle = Rectangle(1, 2, 3, 4)
def test_getLength(self):
assert_equal(self.rectangle.getLength(), 2)
def test_getHeight(self):
assert_equal(self.rectangle.getHeight(), 2)
def test_getArea(self):
assert_equal(self.rectangle.getArea(), 4)
def test_move(self):
self.rectangle.move(4, 8)
self.test_getLength()
self.test_getHeight()
self.test_getArea()
示例5: Rectangle
# 需要導入模塊: from rectangle import Rectangle [as 別名]
# 或者: from rectangle.Rectangle import getArea [as 別名]
from rectangle import Rectangle
r = Rectangle(1, 2, 3, 4)
print r
print "Original area:", r.getArea()
r.move(1,2)
print r
print "Area is invariante under rigid motions:", r.getArea()
r += Rectangle(0,0,1,1)
print r
print "Now the aread is:", r.getArea()
r.setsize(3)
print r.getsize()
示例6: update
# 需要導入模塊: from rectangle import Rectangle [as 別名]
# 或者: from rectangle.Rectangle import getArea [as 別名]
def update(table, viewAngleHorz, deltaTime) :
theta, dist = 0.0, 0.0
#print "update()"
# while True :
ret, img = camera.read() # img.shape 640x480 image
#print "ret: " + str(ret) + "\n"
#ret = True
#img = cv2.imread("c:\Untitled.tiff")
#if not ret : print "oops!\n"
#elif
# cv2.imshow('input',img)
# Convert to hsv img
#hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = rgb_to_hsl_hsv(img, True)
#cv2.imshow("v", v)
thresh = 255
im_bw = cv2.threshold(v, 240, 255, cv2.THRESH_BINARY)[1]
#cv2.imshow("im_bw",im_bw)
#
if False :
rg = better_way(img)
cv2.imshow('huh', rg)
#rg1 = cv2.cvtColor(rg, cv2.COLOR_BGR2HSV)
#hsv = cv2.cvtColor(rg, cv2.COLOR_BGR2HSV)
# Keep only green objects
# higher s = less white, higher v = less black
#invent sliders to adjust
#lowerGreen = np.array([70, 70, 180])
#upperGreen = np.array([110, 130,255])
if False :
lg_h, lg_s, lg_v = 0, 0, 254
ug_h, ug_s, ug_v = 255, 255, 255
#lg_h, lg_s, lg_v = 100, 6, 67
#ug_h, ug_s, ug_v = 158, 98, 87
lowerGreen = np.array([lg_h, lg_s, lg_v])
upperGreen = np.array([ug_h, ug_s, ug_v])
filteredGreen = cv2.inRange(hsv, lowerGreen, upperGreen)
#cv2.imshow('fgreen',filteredGreen)
if False :
filteredGreen = rg
#cv2.cvtColor(rg, cv2.COLOR_RGB2GRAY, filteredGreen, 1)
#cv2.cvtColor(filteredGreen, cv2.COLOR_GRAY2RGBA, filteredGreen, 1)
#rg.convertTo(filteredGreen, CV_8UC1)
#try as hard as heck to convert to happy format for findContours...
min_t = np.array((199, 199, 199))
max_t = np.array((201, 201, 201))
filteredGreen = cv2.inRange(rg, min_t, max_t)
filteredGreen = im_bw
#cv2.imshow('bigfilter',filteredGreen)
# Filter out small objects
filteredGreen = cv2.morphologyEx(filteredGreen, cv2.MORPH_OPEN, np.ones((3, 3)))
#cv2.imshow('fgreens',filteredGreen)
# Find all contours, counter is vector of points that are connected to make up a shape
contours, hierarchy = cv2.findContours(filteredGreen, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Resetting values
foundHotTarget = False
foundVertTarget = False
# work around subtle bug - see StackOverflow
# http://stackoverflow.com/questions/13337058/data-type-error-with-drawcontours-unless-i-pickle-unpickle-first
tmp = cPickle.dumps(contours)
contours = cPickle.loads(tmp)
possibleHotTarget = Rectangle(0,0,0,0)
possibleHotArea = possibleHotTarget.getArea()
possibleVertTarget1 = Rectangle(0,0,0,0)
possibleVertTarget2 = Rectangle(0,0,0,0)
# Parse contours, calculate distance and check if it's the hot target
for shape in contours:
#target = Rectangle(*cv2.boundingRect(shape))
x,y,w,h = cv2.boundingRect(shape)
target = Rectangle(x,y,w,h)
# Filter out small contours
if target.getArea() > 300 and target.getArea() < 30000:
# Compensate for horizontal view of the target
#target.width = target.width / math.cos(viewAngle * math.PI / 180)
#target.width = target.width / math.cos(viewAngle * 3.14159 / 180)
# MPH improvements: - width / height (23.5/4) +-15% then possibly the hot target
# If the width of the target is greater than its height then it's probably the hot target
hotTargetRatio = 23.5 / 4
hotTargetMargin = 0.25 # percent error margin
if (target.width>target.height) and (target.height * (hotTargetRatio)*(1+hotTargetMargin)) >= target.width >= (target.height * ((hotTargetRatio)*(1-hotTargetMargin))):
foundHotTarget = True
if target.getArea() > possibleHotArea :
possibleHotTarget = target
possibleHotArea = target.getArea()
#distance = computeDistance(horizTarget.height, target.height)
#.........這裏部分代碼省略.........