當前位置: 首頁>>代碼示例>>Python>>正文


Python Recommender.set_strategy方法代碼示例

本文整理匯總了Python中recommender.Recommender.set_strategy方法的典型用法代碼示例。如果您正苦於以下問題:Python Recommender.set_strategy方法的具體用法?Python Recommender.set_strategy怎麽用?Python Recommender.set_strategy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在recommender.Recommender的用法示例。


在下文中一共展示了Recommender.set_strategy方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: RecommenderTests

# 需要導入模塊: from recommender import Recommender [as 別名]
# 或者: from recommender.Recommender import set_strategy [as 別名]
class RecommenderTests(unittest2.TestCase):
    @classmethod
    def setUpClass(self):
        cfg = Config()
        cfg.popcon_index = "test_data/.sample_pxi"
        cfg.popcon_dir = "test_data/popcon_dir"
        cfg.clusters_dir = "test_data/clusters_dir"
        self.rec = Recommender(cfg)

    def test_set_strategy(self):
        self.rec.set_strategy("cb")
        self.assertIsInstance(self.rec.strategy,ContentBasedStrategy)
        self.assertEqual(self.rec.strategy.content,"full")
        self.rec.set_strategy("cbt")
        self.assertIsInstance(self.rec.strategy,ContentBasedStrategy)
        self.assertEqual(self.rec.strategy.content,"tag")
        self.rec.set_strategy("cbd")
        self.assertIsInstance(self.rec.strategy,ContentBasedStrategy)
        self.assertEqual(self.rec.strategy.content,"desc")
        self.rec.set_strategy("col")
        self.assertIsInstance(self.rec.strategy,CollaborativeStrategy)

    def test_get_recommendation(self):
        user = User({"inkscape": 1, "gimp": 1, "eog":1})
        result = self.rec.get_recommendation(user)
        self.assertIsInstance(result, RecommendationResult)
        self.assertGreater(len(result.item_score),0)
開發者ID:dpereira,項目名稱:AppRecommender,代碼行數:29,代碼來源:recommender_tests.py

示例2: ContentBasedSuite

# 需要導入模塊: from recommender import Recommender [as 別名]
# 或者: from recommender.Recommender import set_strategy [as 別名]
class ContentBasedSuite(expsuite.PyExperimentSuite):

    def reset(self, params, rep):
        if params['name'].startswith("content"):
            cfg = Config()
            # if the index was not built yet
            # app_axi = AppAptXapianIndex(cfg.axi,"results/arnaldo/AppAxi")
            cfg.axi = "data/AppAxi"
            cfg.index_mode = "old"
            cfg.weight = params['weight']
            self.rec = Recommender(cfg)
            self.rec.set_strategy(params['strategy'])
            self.repo_size = self.rec.items_repository.get_doccount()
            self.user = LocalSystem()
            self.user.app_pkg_profile(self.rec.items_repository)
            self.user.no_auto_pkg_profile()
            self.sample_size = int(
                len(self.user.pkg_profile) * params['sample'])
            # iteration should be set to 10 in config file
            # self.profile_size = range(10,101,10)

    def iterate(self, params, rep, n):
        if params['name'].startswith("content"):
            item_score = dict.fromkeys(self.user.pkg_profile, 1)
            # Prepare partition
            sample = {}
            for i in range(self.sample_size):
                key = random.choice(item_score.keys())
                sample[key] = item_score.pop(key)
            # Get full recommendation
            user = User(item_score)
            recommendation = self.rec.get_recommendation(user, self.repo_size)
            # Write recall log
            recall_file = "results/content/recall/%s-%s-%.2f-%d" % \
                          (params['strategy'], params[
                           'weight'], params['sample'], n)
            output = open(recall_file, 'w')
            output.write("# weight=%s\n" % params['weight'])
            output.write("# strategy=%s\n" % params['strategy'])
            output.write("# sample=%f\n" % params['sample'])
            output.write("\n%d %d %d\n" %
                         (self.repo_size, len(item_score), self.sample_size))
            notfound = []
            ranks = []
            for pkg in sample.keys():
                if pkg in recommendation.ranking:
                    ranks.append(recommendation.ranking.index(pkg))
                else:
                    notfound.append(pkg)
            for r in sorted(ranks):
                output.write(str(r) + "\n")
            if notfound:
                output.write("Out of recommendation:\n")
                for pkg in notfound:
                    output.write(pkg + "\n")
            output.close()
            # Plot metrics summary
            accuracy = []
            precision = []
            recall = []
            f1 = []
            g = Gnuplot.Gnuplot()
            g('set style data lines')
            g.xlabel('Recommendation size')
            for size in range(1, len(recommendation.ranking) + 1, 100):
                predicted = RecommendationResult(
                    dict.fromkeys(recommendation.ranking[:size], 1))
                real = RecommendationResult(sample)
                evaluation = Evaluation(predicted, real, self.repo_size)
                accuracy.append([size, evaluation.run(Accuracy())])
                precision.append([size, evaluation.run(Precision())])
                recall.append([size, evaluation.run(Recall())])
                f1.append([size, evaluation.run(F1())])
            g.plot(Gnuplot.Data(accuracy, title="Accuracy"),
                   Gnuplot.Data(precision, title="Precision"),
                   Gnuplot.Data(recall, title="Recall"),
                   Gnuplot.Data(f1, title="F1"))
            g.hardcopy(recall_file + "-plot.ps", enhanced=1, color=1)
            # Iteration log
            result = {'iteration': n,
                      'weight': params['weight'],
                      'strategy': params['strategy'],
                      'accuracy': accuracy[20],
                      'precision': precision[20],
                      'recall:': recall[20],
                      'f1': f1[20]}
            return result
開發者ID:GCS2016,項目名稱:AppRecommender,代碼行數:89,代碼來源:runner.py

示例3: __init__

# 需要導入模塊: from recommender import Recommender [as 別名]
# 或者: from recommender.Recommender import set_strategy [as 別名]
class Survey:

    def __init__(self):
        logging.info("Setting up survey...")
        self.cfg = Config()
        self.rec = Recommender(self.cfg)
        self.submissions_dir = "/var/www/AppRecommender/src/web/submissions/"
        if not os.path.exists(self.submissions_dir):
            os.makedirs(self.submissions_dir)
        self.strategies = ["cbh", "cbh_eset",
                           "knn", "knn_eset", "knn_plus",
                           "knnco"]

    def POST(self):
        web_input = web.input(pkgs_file={})
        if 'user_id' in web_input:
            user_id = web_input['user_id'].encode('utf8')
            user_dir = os.path.join(self.submissions_dir, user_id)
            logging.info("New recommendation for user %s" % user_id)

        uploaded_file = os.path.join(user_dir, "uploaded_file")
        with open(uploaded_file) as uploaded:
            if uploaded.readline().startswith('POPULARITY-CONTEST'):
                user = PopconSystem(uploaded_file, user_id)
            else:
                user = PkgsListSystem(uploaded_file, user_id)
        user.maximal_pkg_profile()
        if len(user.pkg_profile) < 10:
            error_msg = "Could not extract profile from uploaded file. It must have at least 10 applications."  # noqa
            logging.critical(error_msg)
            return render.error([error_msg], "/survey/", "START")
        else:
            # Check the remaining strategies and select a new one
            old_strategies = [dirs for root, dirs, files in
                              os.walk(os.path.join(self.submissions_dir,
                                                   user_id))]
            if old_strategies:
                strategies = [
                    s for s in self.strategies if s not in old_strategies[0]]
                logging.info("Already used strategies %s" % old_strategies[0])
            else:
                strategies = self.strategies
            if not strategies:
                return render.thanks(user_id)
            selected_strategy = random.choice(strategies)
            logging.info("Selected \'%s\' from %s" %
                         (selected_strategy, strategies))
            self.set_rec_strategy(selected_strategy)
            prediction = self.rec.get_recommendation(user, 10).get_prediction()
            logging.info("Prediction for user %s" % user_id)
            logging.info(str(prediction))
            self.save_prediction(user_id, selected_strategy, prediction)

            # Load packages details
            recommendation = [result[0] for result in prediction]
            pkgs_details = []
            for pkg_name in recommendation:
                logging.info("Getting details of package %s" % pkg_name)
                pkg = DebianPackage(pkg_name)
                pkg.load_details()
                pkgs_details.append(pkg)

            if pkgs_details:
                logging.info("Rendering survey slide...")
                return render.survey(pkgs_details, user_id, selected_strategy,
                                     len(strategies))
            else:
                return render.error(
                    ["No recommendation produced for the uploaded file."],
                    "/survey/", "START")

    def set_rec_strategy(self, selected_strategy):
        k = 10
        n = 20
        if selected_strategy == "cbh":
            pass
        if selected_strategy == "cbh_eset":
            pass
        if selected_strategy == "knn":
            pass
        if selected_strategy == "knn_eset":
            pass
        if selected_strategy == "knn_plus":
            pass
        if selected_strategy == "knnco":
            pass
        self.rec.set_strategy(selected_strategy, k, n)
        return selected_strategy

    def save_prediction(self, user_id, strategy, prediction):
        strategy_dir = os.path.join(self.submissions_dir, user_id, strategy)
        if not os.path.exists(strategy_dir):
            os.makedirs(strategy_dir)
        ranking = 0
        prediction_file = open(os.path.join(strategy_dir, "prediction"), "w")
        try:
            writer = csv.writer(prediction_file)
            fieldnames = ('ranking', 'rating', 'package', 'evaluation')
            writer.writerow(fieldnames)
            for pkg, rating in prediction:
#.........這裏部分代碼省略.........
開發者ID:GCS2016,項目名稱:AppRecommender,代碼行數:103,代碼來源:survey.py


注:本文中的recommender.Recommender.set_strategy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。