本文整理匯總了Python中rdkit.ML.Data.Quantize.feq方法的典型用法代碼示例。如果您正苦於以下問題:Python Quantize.feq方法的具體用法?Python Quantize.feq怎麽用?Python Quantize.feq使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類rdkit.ML.Data.Quantize
的用法示例。
在下文中一共展示了Quantize.feq方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testMultSplit3
# 需要導入模塊: from rdkit.ML.Data import Quantize [as 別名]
# 或者: from rdkit.ML.Data.Quantize import feq [as 別名]
def testMultSplit3(self):
""" 4 possible results
"""
d = [(1.,0),
(1.1,0),
(1.2,0),
(1.4,2),
(1.4,2),
(1.6,2),
(2.,2),
(2.1,1),
(2.1,1),
(2.1,1),
(2.2,1),
(2.3,1),
(3.0,3),
(3.1,3),
(3.2,3),
(3.3,3)]
varValues = map(lambda x:x[0],d)
resCodes = map(lambda x:x[1],d)
nPossibleRes =4
res = Quantize.FindVarMultQuantBounds(varValues,3,resCodes,nPossibleRes)
target = ([1.30, 2.05, 2.65],1.97722)
assert Quantize.feq(res[1],target[1],1e-4),\
'InfoGain comparison failed: %s != %s'%(res[1],target[1])
assert min(map(lambda x,y:Quantize.feq(x,y,1e-4),res[0],target[0]))==1,\
'split bound comparison failed: %s != %s'%(res[0],target[0])
示例2: testMultSplit5
# 需要導入模塊: from rdkit.ML.Data import Quantize [as 別名]
# 或者: from rdkit.ML.Data.Quantize import feq [as 別名]
def testMultSplit5(self):
""" dual valued, with an island, a bit noisy
"""
d = [(1., 0), (1.1, 0), (1.2, 0), (1.4, 1), (1.4, 0), (1.6, 1), (2., 1), (2.1, 0), (2.1, 0),
(2.1, 0), (2.2, 1), (2.3, 0)]
varValues, resCodes = zip(*d)
nPossibleRes = 2
res = Quantize.FindVarMultQuantBounds(varValues, 2, resCodes, nPossibleRes)
target = ([1.3, 2.05], .34707)
assert Quantize.feq(res[1],target[1],1e-4),\
'InfoGain comparison failed: %s != %s'%(res[1],target[1])
assert min(map(lambda x,y:Quantize.feq(x,y,1e-4),res[0],target[0]))==1,\
'split bound comparison failed: %s != %s'%(res[0],target[0])
示例3: testMultSplit2
# 需要導入模塊: from rdkit.ML.Data import Quantize [as 別名]
# 或者: from rdkit.ML.Data.Quantize import feq [as 別名]
def testMultSplit2(self):
""" same test as testMultSplit1, but out of order
"""
d = [(1., 0), (2.1, 1), (1.1, 0), (1.2, 0), (1.4, 2), (1.6, 2), (2., 2), (1.4, 2), (2.1, 1),
(2.2, 1), (2.1, 1), (2.3, 1)]
varValues, resCodes = zip(*d)
nPossibleRes = 3
res = Quantize.FindVarMultQuantBounds(varValues, 2, resCodes, nPossibleRes)
target = ([1.3, 2.05], 1.55458)
assert Quantize.feq(res[1],target[1],1e-4),\
'InfoGain comparison failed: %s != %s'%(res[1],target[1])
assert min(map(lambda x,y:Quantize.feq(x,y,1e-4),res[0],target[0]))==1,\
'split bound comparison failed: %s != %s'%(res[0],target[0])
示例4: testMultSplit3_4results
# 需要導入模塊: from rdkit.ML.Data import Quantize [as 別名]
# 或者: from rdkit.ML.Data.Quantize import feq [as 別名]
def testMultSplit3_4results(self):
# """ 4 possible results """
d = [(1., 0), (1.1, 0), (1.2, 0), (1.4, 2), (1.4, 2), (1.6, 2), (2., 2), (2.1, 1), (2.1, 1),
(2.1, 1), (2.2, 1), (2.3, 1), (3.0, 3), (3.1, 3), (3.2, 3), (3.3, 3)]
varValues, resCodes = zip(*d)
nPossibleRes = 4
res = Quantize.FindVarMultQuantBounds(varValues, 3, resCodes, nPossibleRes)
target = ([1.30, 2.05, 2.65], 1.97722)
self.assertTrue(
Quantize.feq(res[1], target[1], 1e-4),
'InfoGain comparison failed: %s != %s' % (res[1], target[1]))
self.assertEqual(
min(map(lambda x, y: Quantize.feq(x, y, 1e-4), res[0], target[0])), 1,
'split bound comparison failed: %s != %s' % (res[0], target[0]))
示例5: testMultSplit1_simple_dual
# 需要導入模塊: from rdkit.ML.Data import Quantize [as 別名]
# 或者: from rdkit.ML.Data.Quantize import feq [as 別名]
def testMultSplit1_simple_dual(self):
# """ simple dual split """
d = [(1., 0), (1.1, 0), (1.2, 0), (1.4, 2), (1.4, 2), (1.6, 2), (2., 2), (2.1, 1), (2.1, 1),
(2.1, 1), (2.2, 1), (2.3, 1)]
varValues, resCodes = zip(*d)
nPossibleRes = 3
res = Quantize.FindVarMultQuantBounds(varValues, 2, resCodes, nPossibleRes)
target = ([1.3, 2.05], 1.55458)
self.assertEqual(
min(map(lambda x, y: Quantize.feq(x, y, 1e-4), res[0], target[0])), 1,
'split bound comparison failed: %s != %s' % (res[0], target[0]))
self.assertTrue(
Quantize.feq(res[1], target[1], 1e-4),
'InfoGain comparison failed: %s != %s' % (res[1], target[1]))
示例6: testMultSplit4_dualValued_island
# 需要導入模塊: from rdkit.ML.Data import Quantize [as 別名]
# 或者: from rdkit.ML.Data.Quantize import feq [as 別名]
def testMultSplit4_dualValued_island(self):
# """ dual valued, with an island """
d = [(1., 0), (1.1, 0), (1.2, 0), (1.4, 1), (1.4, 1), (1.6, 1), (2., 1), (2.1, 0), (2.1, 0),
(2.1, 0), (2.2, 0), (2.3, 0)]
varValues, resCodes = zip(*d)
nPossibleRes = 2
res = Quantize.FindVarMultQuantBounds(varValues, 2, resCodes, nPossibleRes)
target = ([1.3, 2.05], .91830)
self.assertTrue(
Quantize.feq(res[1], target[1], 1e-4),
'InfoGain comparison failed: %s != %s' % (res[1], target[1]))
self.assertEqual(
min(map(lambda x, y: Quantize.feq(x, y, 1e-4), res[0], target[0])), 1,
'split bound comparison failed: %s != %s' % (res[0], target[0]))
示例7: testOneSplit5
# 需要導入模塊: from rdkit.ML.Data import Quantize [as 別名]
# 或者: from rdkit.ML.Data.Quantize import feq [as 別名]
def testOneSplit5(self):
""" same as testOneSplit1 data, but out of order
"""
d = [(1., 0), (1.1, 0), (2.2, 1), (1.2, 0), (1.6, 0), (1.4, 0), (2., 1), (2.1, 1), (1.4, 0),
(2.3, 1)]
varValues, resCodes = zip(*d)
nPossibleRes = 2
res = Quantize.FindVarQuantBound(varValues, resCodes, nPossibleRes)
target = (1.8, 0.97095)
assert list(map(lambda x,y:Quantize.feq(x,y,1e-4),res,target))==[1,1],\
'result comparison failed: %s != %s'%(res,target)
示例8: testOneSplit4
# 需要導入模塊: from rdkit.ML.Data import Quantize [as 別名]
# 或者: from rdkit.ML.Data.Quantize import feq [as 別名]
def testOneSplit4(self):
""" lots of duplicates
"""
d = [(1., 0), (1.1, 0), (1.2, 0), (1.2, 1), (1.4, 0), (1.4, 0), (1.6, 0), (2., 1), (2.1, 1),
(2.1, 1), (2.1, 1), (2.1, 1), (2.2, 1), (2.3, 1)]
varValues, resCodes = zip(*d)
nPossibleRes = 2
res = Quantize.FindVarQuantBound(varValues, resCodes, nPossibleRes)
target = (1.8, 0.68939)
assert list(map(lambda x,y:Quantize.feq(x,y,1e-4),res,target))==[1,1],\
'result comparison failed: %s != %s'%(res,target)
示例9: testOneSplit3
# 需要導入模塊: from rdkit.ML.Data import Quantize [as 別名]
# 或者: from rdkit.ML.Data.Quantize import feq [as 別名]
def testOneSplit3(self):
""" optimal division not possibe
"""
d = [(1., 0), (1.1, 0), (1.2, 0), (1.4, 2), (1.4, 2), (1.6, 2), (2., 2), (2.1, 1), (2.2, 1),
(2.3, 1)]
varValues, resCodes = zip(*d)
nPossibleRes = 3
res = Quantize.FindVarQuantBound(varValues, resCodes, nPossibleRes)
target = (1.3, 0.88129)
assert list(map(lambda x,y:Quantize.feq(x,y,1e-4),res,target))==[1,1],\
'result comparison failed: %s != %s'%(res,target)
示例10: testOneSplit2_noise
# 需要導入模塊: from rdkit.ML.Data import Quantize [as 別名]
# 或者: from rdkit.ML.Data.Quantize import feq [as 別名]
def testOneSplit2_noise(self):
# """ some noise """
d = [(1., 0), (1.1, 0), (1.2, 0), (1.4, 0), (1.4, 1), (1.6, 0), (2., 1), (2.1, 1), (2.2, 1),
(2.3, 1)]
varValues, resCodes = zip(*d)
nPossibleRes = 2
res = Quantize.FindVarQuantBound(varValues, resCodes, nPossibleRes)
target = (1.8, 0.60999)
self.assertEqual(
list(map(lambda x, y: Quantize.feq(x, y, 1e-4), res, target)), [1, 1],
'result comparison failed: %s != %s' % (res, target))
示例11: testOneSplit2
# 需要導入模塊: from rdkit.ML.Data import Quantize [as 別名]
# 或者: from rdkit.ML.Data.Quantize import feq [as 別名]
def testOneSplit2(self):
""" some noise
"""
d = [(1.,0),
(1.1,0),
(1.2,0),
(1.4,0),
(1.4,1),
(1.6,0),
(2.,1),
(2.1,1),
(2.2,1),
(2.3,1)]
varValues = map(lambda x:x[0],d)
resCodes = map(lambda x:x[1],d)
nPossibleRes = 2
res = Quantize.FindVarQuantBound(varValues,resCodes,nPossibleRes)
target = (1.8,0.60999)
assert map(lambda x,y:Quantize.feq(x,y,1e-4),res,target)==[1,1],\
'result comparison failed: %s != %s'%(res,target)