本文整理匯總了Python中ray.autoscaler.autoscaler.StandardAutoscaler.update方法的典型用法代碼示例。如果您正苦於以下問題:Python StandardAutoscaler.update方法的具體用法?Python StandardAutoscaler.update怎麽用?Python StandardAutoscaler.update使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ray.autoscaler.autoscaler.StandardAutoscaler
的用法示例。
在下文中一共展示了StandardAutoscaler.update方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testDelayedLaunch
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testDelayedLaunch(self):
config_path = self.write_config(SMALL_CLUSTER)
self.provider = MockProvider()
autoscaler = StandardAutoscaler(
config_path,
LoadMetrics(),
max_launch_batch=5,
max_concurrent_launches=5,
max_failures=0,
update_interval_s=0)
assert len(self.provider.non_terminated_nodes({})) == 0
# Update will try to create, but will block until we set the flag
self.provider.ready_to_create.clear()
autoscaler.update()
assert autoscaler.num_launches_pending.value == 2
assert len(self.provider.non_terminated_nodes({})) == 0
# Set the flag, check it updates
self.provider.ready_to_create.set()
self.waitForNodes(2)
assert autoscaler.num_launches_pending.value == 0
# Update the config to reduce the cluster size
new_config = SMALL_CLUSTER.copy()
new_config["max_workers"] = 1
self.write_config(new_config)
autoscaler.update()
assert len(self.provider.non_terminated_nodes({})) == 1
示例2: testMaxFailures
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testMaxFailures(self):
config_path = self.write_config(SMALL_CLUSTER)
self.provider = MockProvider()
self.provider.throw = True
autoscaler = StandardAutoscaler(
config_path, LoadMetrics(), max_failures=2, update_interval_s=0)
autoscaler.update()
autoscaler.update()
self.assertRaises(Exception, autoscaler.update)
示例3: testScaleUp
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testScaleUp(self):
config_path = self.write_config(SMALL_CLUSTER)
self.provider = MockProvider()
autoscaler = StandardAutoscaler(
config_path, LoadMetrics(), max_failures=0, update_interval_s=0)
self.assertEqual(len(self.provider.nodes({})), 0)
autoscaler.update()
self.assertEqual(len(self.provider.nodes({})), 2)
autoscaler.update()
self.assertEqual(len(self.provider.nodes({})), 2)
示例4: testScaleUp
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testScaleUp(self):
config_path = self.write_config(SMALL_CLUSTER)
self.provider = MockProvider()
autoscaler = StandardAutoscaler(
config_path, LoadMetrics(), max_failures=0, update_interval_s=0)
assert len(self.provider.non_terminated_nodes({})) == 0
autoscaler.update()
self.waitForNodes(2)
autoscaler.update()
self.waitForNodes(2)
示例5: testUpdateThrottling
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testUpdateThrottling(self):
config_path = self.write_config(SMALL_CLUSTER)
self.provider = MockProvider()
autoscaler = StandardAutoscaler(
config_path, LoadMetrics(), max_concurrent_launches=5,
max_failures=0, update_interval_s=10)
autoscaler.update()
self.assertEqual(len(self.provider.nodes({})), 2)
new_config = SMALL_CLUSTER.copy()
new_config["max_workers"] = 1
self.write_config(new_config)
autoscaler.update()
self.assertEqual(len(self.provider.nodes({})), 2) # not updated yet
示例6: testLaunchNewNodeOnOutOfBandTerminate
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testLaunchNewNodeOnOutOfBandTerminate(self):
config_path = self.write_config(SMALL_CLUSTER)
self.provider = MockProvider()
autoscaler = StandardAutoscaler(
config_path, LoadMetrics(), max_failures=0, update_interval_s=0)
autoscaler.update()
autoscaler.update()
self.assertEqual(len(self.provider.nodes({})), 2)
for node in self.provider.mock_nodes.values():
node.state = "terminated"
self.assertEqual(len(self.provider.nodes({})), 0)
autoscaler.update()
self.assertEqual(len(self.provider.nodes({})), 2)
示例7: testDynamicScaling
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testDynamicScaling(self):
config_path = self.write_config(SMALL_CLUSTER)
self.provider = MockProvider()
autoscaler = StandardAutoscaler(
config_path, LoadMetrics(), max_concurrent_launches=5,
max_failures=0, update_interval_s=0)
self.assertEqual(len(self.provider.nodes({})), 0)
autoscaler.update()
self.assertEqual(len(self.provider.nodes({})), 2)
# Update the config to reduce the cluster size
new_config = SMALL_CLUSTER.copy()
new_config["max_workers"] = 1
self.write_config(new_config)
autoscaler.update()
self.assertEqual(len(self.provider.nodes({})), 1)
# Update the config to reduce the cluster size
new_config["min_workers"] = 10
new_config["max_workers"] = 10
self.write_config(new_config)
autoscaler.update()
self.assertEqual(len(self.provider.nodes({})), 6)
autoscaler.update()
self.assertEqual(len(self.provider.nodes({})), 10)
示例8: testDontScaleBelowTarget
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testDontScaleBelowTarget(self):
config = SMALL_CLUSTER.copy()
config["min_workers"] = 0
config["max_workers"] = 2
config["target_utilization_fraction"] = 0.5
config_path = self.write_config(config)
self.provider = MockProvider()
lm = LoadMetrics()
autoscaler = StandardAutoscaler(
config_path, lm, max_failures=0, update_interval_s=0)
assert len(self.provider.non_terminated_nodes({})) == 0
autoscaler.update()
assert autoscaler.num_launches_pending.value == 0
assert len(self.provider.non_terminated_nodes({})) == 0
# Scales up as nodes are reported as used
local_ip = services.get_node_ip_address()
lm.update(local_ip, {"CPU": 2}, {"CPU": 0}) # head
# 1.0 nodes used => target nodes = 2 => target workers = 1
autoscaler.update()
self.waitForNodes(1)
# Make new node idle, and never used.
# Should hold steady as target is still 2.
lm.update("172.0.0.0", {"CPU": 0}, {"CPU": 0})
lm.last_used_time_by_ip["172.0.0.0"] = 0
autoscaler.update()
assert len(self.provider.non_terminated_nodes({})) == 1
# Reduce load on head => target nodes = 1 => target workers = 0
lm.update(local_ip, {"CPU": 2}, {"CPU": 1})
autoscaler.update()
assert len(self.provider.non_terminated_nodes({})) == 0
示例9: testConfiguresNewNodes
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testConfiguresNewNodes(self):
config_path = self.write_config(SMALL_CLUSTER)
self.provider = MockProvider()
runner = MockProcessRunner()
autoscaler = StandardAutoscaler(
config_path,
LoadMetrics(),
max_failures=0,
process_runner=runner,
update_interval_s=0)
autoscaler.update()
autoscaler.update()
self.waitForNodes(2)
for node in self.provider.mock_nodes.values():
node.state = "running"
autoscaler.update()
self.waitForNodes(2, tag_filters={TAG_RAY_NODE_STATUS: "up-to-date"})
示例10: testDelayedLaunchWithFailure
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testDelayedLaunchWithFailure(self):
config = SMALL_CLUSTER.copy()
config["min_workers"] = 10
config["max_workers"] = 10
config_path = self.write_config(config)
self.provider = MockProvider()
autoscaler = StandardAutoscaler(
config_path,
LoadMetrics(),
max_launch_batch=5,
max_concurrent_launches=8,
max_failures=0,
update_interval_s=0)
assert len(self.provider.non_terminated_nodes({})) == 0
# update() should launch a wave of 5 nodes (max_launch_batch)
# Force this first wave to block.
rtc1 = self.provider.ready_to_create
rtc1.clear()
autoscaler.update()
# Synchronization: wait for launchy thread to be blocked on rtc1
if hasattr(rtc1, '_cond'): # Python 3.5
waiters = rtc1._cond._waiters
else: # Python 2.7
waiters = rtc1._Event__cond._Condition__waiters
self.waitFor(lambda: len(waiters) == 1)
assert autoscaler.num_launches_pending.value == 5
assert len(self.provider.non_terminated_nodes({})) == 0
# Call update() to launch a second wave of 3 nodes,
# as 5 + 3 = 8 = max_concurrent_launches.
# Make this wave complete immediately.
rtc2 = threading.Event()
self.provider.ready_to_create = rtc2
rtc2.set()
autoscaler.update()
self.waitForNodes(3)
assert autoscaler.num_launches_pending.value == 5
# The first wave of 5 will now tragically fail
self.provider.fail_creates = True
rtc1.set()
self.waitFor(lambda: autoscaler.num_launches_pending.value == 0)
assert len(self.provider.non_terminated_nodes({})) == 3
# Retry the first wave, allowing it to succeed this time
self.provider.fail_creates = False
autoscaler.update()
self.waitForNodes(8)
assert autoscaler.num_launches_pending.value == 0
# Final wave of 2 nodes
autoscaler.update()
self.waitForNodes(10)
assert autoscaler.num_launches_pending.value == 0
示例11: testLaunchConfigChange
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testLaunchConfigChange(self):
config_path = self.write_config(SMALL_CLUSTER)
self.provider = MockProvider()
autoscaler = StandardAutoscaler(
config_path, LoadMetrics(), max_failures=0, update_interval_s=0)
autoscaler.update()
self.waitForNodes(2)
# Update the config to change the node type
new_config = SMALL_CLUSTER.copy()
new_config["worker_nodes"]["InstanceType"] = "updated"
self.write_config(new_config)
self.provider.ready_to_create.clear()
for _ in range(5):
autoscaler.update()
self.waitForNodes(0)
self.provider.ready_to_create.set()
self.waitForNodes(2)
示例12: testLaunchConfigChange
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testLaunchConfigChange(self):
config_path = self.write_config(SMALL_CLUSTER)
self.provider = MockProvider()
autoscaler = StandardAutoscaler(
config_path, LoadMetrics(), max_failures=0, update_interval_s=0)
autoscaler.update()
self.assertEqual(len(self.provider.nodes({})), 2)
# Update the config to change the node type
new_config = SMALL_CLUSTER.copy()
new_config["worker_nodes"]["InstanceType"] = "updated"
self.write_config(new_config)
existing_nodes = set(self.provider.nodes({}))
for _ in range(5):
autoscaler.update()
new_nodes = set(self.provider.nodes({}))
self.assertEqual(len(new_nodes), 2)
self.assertEqual(len(new_nodes.intersection(existing_nodes)), 0)
示例13: testReportsConfigFailures
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testReportsConfigFailures(self):
config_path = self.write_config(SMALL_CLUSTER)
self.provider = MockProvider()
runner = MockProcessRunner(fail_cmds=["cmd1"])
autoscaler = StandardAutoscaler(
config_path, LoadMetrics(), max_failures=0, process_runner=runner,
verbose_updates=True, node_updater_cls=NodeUpdaterThread,
update_interval_s=0)
autoscaler.update()
autoscaler.update()
self.assertEqual(len(self.provider.nodes({})), 2)
for node in self.provider.mock_nodes.values():
node.state = "running"
assert len(self.provider.nodes(
{TAG_RAY_NODE_STATUS: "Uninitialized"})) == 2
autoscaler.update()
self.waitFor(
lambda: len(self.provider.nodes(
{TAG_RAY_NODE_STATUS: "UpdateFailed"})) == 2)
示例14: testTerminateOutdatedNodesGracefully
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testTerminateOutdatedNodesGracefully(self):
config = SMALL_CLUSTER.copy()
config["min_workers"] = 5
config["max_workers"] = 5
config_path = self.write_config(config)
self.provider = MockProvider()
self.provider.create_node({}, {TAG_RAY_NODE_TYPE: "Worker"}, 10)
autoscaler = StandardAutoscaler(
config_path, LoadMetrics(), max_failures=0, update_interval_s=0)
self.assertEqual(len(self.provider.nodes({})), 10)
# Gradually scales down to meet target size, never going too low
for _ in range(10):
autoscaler.update()
self.assertLessEqual(len(self.provider.nodes({})), 5)
self.assertGreaterEqual(len(self.provider.nodes({})), 4)
# Eventually reaches steady state
self.assertEqual(len(self.provider.nodes({})), 5)
示例15: testIgnoresCorruptedConfig
# 需要導入模塊: from ray.autoscaler.autoscaler import StandardAutoscaler [as 別名]
# 或者: from ray.autoscaler.autoscaler.StandardAutoscaler import update [as 別名]
def testIgnoresCorruptedConfig(self):
config_path = self.write_config(SMALL_CLUSTER)
self.provider = MockProvider()
autoscaler = StandardAutoscaler(
config_path,
LoadMetrics(),
max_launch_batch=10,
max_concurrent_launches=10,
max_failures=0,
update_interval_s=0)
autoscaler.update()
self.waitForNodes(2)
# Write a corrupted config
self.write_config("asdf")
for _ in range(10):
autoscaler.update()
time.sleep(0.1)
assert autoscaler.num_launches_pending.value == 0
assert len(self.provider.non_terminated_nodes({})) == 2
# New a good config again
new_config = SMALL_CLUSTER.copy()
new_config["min_workers"] = 10
new_config["max_workers"] = 10
self.write_config(new_config)
autoscaler.update()
self.waitForNodes(10)