本文整理匯總了Python中quex.engine.state_machine.core.StateMachine.get_epsilon_closure方法的典型用法代碼示例。如果您正苦於以下問題:Python StateMachine.get_epsilon_closure方法的具體用法?Python StateMachine.get_epsilon_closure怎麽用?Python StateMachine.get_epsilon_closure使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類quex.engine.state_machine.core.StateMachine
的用法示例。
在下文中一共展示了StateMachine.get_epsilon_closure方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: do
# 需要導入模塊: from quex.engine.state_machine.core import StateMachine [as 別名]
# 或者: from quex.engine.state_machine.core.StateMachine import get_epsilon_closure [as 別名]
def do(SM_List):
"""Intersection:
Only match on patterns which are matched by all state machines
in 'SM_List'.
(C) 2013 Frank-Rene Schaefer
________________________________________________________________________
A lexeme which matches all patterns must reach an acceptance in each
given state machine. That is,
For each state machine; there is a path from the init
state to an acceptance state triggered along the by
the characters of the lexeme.
We cannot go forward, since we cannot omit a path upon non-fit.
Now, consider the super-state consisting of all acceptance states
of all state machines. There there must be a way backward from the
super-acceptance-state to the init state states. As soon, as a
path is interupted, it can be thrown away. This can be achieved
by reversed state machines which are combined into a single one.
Reverse all state machines; The epsilon closure of the init state
corresponds to the super acceptance state. The transitions in the
super-state machine correspond to the way backwards in the state
machine. For each feasible state in the super-state machine create
a new state.
The acceptance state of the reversed state machines correspond to
the init state of the original state machines. If the super state
contains an acceptance state of the original state, it can become
an acceptance state of the intersection, because we now found a
path. The found state machine must be reversed at the end.
"""
for sm in SM_List:
if special.is_none(sm): # If one state machine is '\None'
return special.get_none() # then, the intersection is '\None'
reverse_sm_list = [ reverse.do(sm) for sm in SM_List ]
state_id_set_list = [ set(sm.states.iterkeys()) for sm in reverse_sm_list ]
acceptance_state_id_list = [ set(sm.get_acceptance_state_index_list()) for sm in reverse_sm_list ]
def has_one_from_each(StateIDSet_List, StateIDSet):
"""StateIDSet_List[i] is the set of state indices from state
machine 'i' in 'reverse_sm_list'.
RETURNS: True -- If the StateIDSet has at least one state
from every state machine.
False -- If there is at least one state machine
that has no state in 'StateIDSet'.
"""
for state_id_set in StateIDSet_List:
if state_id_set.isdisjoint(StateIDSet):
return False
return True
def get_merged_state(AcceptanceStateIndexList, EpsilonClosure):
"""Create the new target state in the state machine
Accept only if all accept.
"""
acceptance_f = has_one_from_each(AcceptanceStateIndexList,
EpsilonClosure)
return State(AcceptanceF=acceptance_f)
# Plain merge of all states of all state machines with an
# epsilon transition from the init state to all init states
# of the reverse_sm
sm = StateMachine()
for rsm in reverse_sm_list:
sm.states.update(rsm.states)
sm.add_epsilon_transition(sm.init_state_index, rsm.init_state_index)
initial_state_epsilon_closure = sm.get_epsilon_closure(sm.init_state_index)
InitState = get_merged_state(acceptance_state_id_list,
initial_state_epsilon_closure)
result = StateMachine(InitStateIndex=index.get(), InitState=InitState)
# (*) prepare the initial worklist
worklist = [ ( result.init_state_index, initial_state_epsilon_closure) ]
epsilon_closure_db = sm.get_epsilon_closure_db()
while len(worklist) != 0:
# 'start_state_index' is the index of an **existing** state in the state machine.
# It was either created above, in StateMachine's constructor, or as a target
# state index.
start_state_index, start_state_combination = worklist.pop()
# (*) compute the elementary trigger sets together with the
# epsilon closure of target state combinations that they trigger to.
# In other words: find the ranges of characters where the state triggers to
# a unique state combination. E.g:
# Range Target State Combination
# [0:23] --> [ State1, State2, State10 ]
# [24:60] --> [ State1 ]
#.........這裏部分代碼省略.........