當前位置: 首頁>>代碼示例>>Python>>正文


Python VanillaOption.implied_volatility方法代碼示例

本文整理匯總了Python中quantlib.instruments.option.VanillaOption.implied_volatility方法的典型用法代碼示例。如果您正苦於以下問題:Python VanillaOption.implied_volatility方法的具體用法?Python VanillaOption.implied_volatility怎麽用?Python VanillaOption.implied_volatility使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在quantlib.instruments.option.VanillaOption的用法示例。


在下文中一共展示了VanillaOption.implied_volatility方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_bsm_hw

# 需要導入模塊: from quantlib.instruments.option import VanillaOption [as 別名]
# 或者: from quantlib.instruments.option.VanillaOption import implied_volatility [as 別名]
    def test_bsm_hw(self):
        print("Testing European option pricing for a BSM process" +
              " with one-factor Hull-White model...")

        dc = Actual365Fixed()
        todays_date = today()
        maturity_date = todays_date + Period(20, Years)

        settings = Settings()
        settings.evaluation_date = todays_date

        spot = SimpleQuote(100)

        q_ts = flat_rate(todays_date, 0.04, dc)
        r_ts = flat_rate(todays_date, 0.0525, dc)
        vol_ts = BlackConstantVol(todays_date, NullCalendar(), 0.25, dc)

        hullWhiteModel = HullWhite(r_ts, 0.00883, 0.00526)

        bsm_process = BlackScholesMertonProcess(spot, q_ts,
                                                r_ts, vol_ts)

        exercise = EuropeanExercise(maturity_date)

        fwd = spot.value * q_ts.discount(maturity_date) / \
            r_ts.discount(maturity_date)

        payoff = PlainVanillaPayoff(Call, fwd)

        option = VanillaOption(payoff, exercise)

        tol = 1e-8
        corr = [-0.75, -0.25, 0.0, 0.25, 0.75]
        expectedVol = [0.217064577, 0.243995801, 0.256402830,
                       0.268236596, 0.290461343]

        for c, v in zip(corr, expectedVol):
            bsm_hw_engine = AnalyticBSMHullWhiteEngine(c, bsm_process,
                                                       hullWhiteModel)

            option = VanillaOption(payoff, exercise)
            option.set_pricing_engine(bsm_hw_engine)
            npv = option.npv

            compVolTS = BlackConstantVol(todays_date, NullCalendar(),
                                         v, dc)

            bs_process = BlackScholesMertonProcess(spot, q_ts,
                                                   r_ts, compVolTS)
            bsEngine = AnalyticEuropeanEngine(bs_process)

            comp = VanillaOption(payoff, exercise)
            comp.set_pricing_engine(bsEngine)

            impliedVol = comp.implied_volatility(npv, bs_process,
                                                 1e-10, 500,
                                                 min_vol=0.1,
                                                 max_vol=0.4)

            if (abs(impliedVol - v) > tol):
                print("Failed to reproduce implied volatility cor: %f" % c)
                print("calculated: %f" % impliedVol)
                print("expected  : %f" % v)

            if abs((comp.npv - npv) / npv) > tol:
                print("Failed to reproduce NPV")
                print("calculated: %f" % comp.npv)
                print("expected  : %f" % npv)

            self.assertAlmostEqual(impliedVol, v, delta=tol)
            self.assertAlmostEqual(comp.npv / npv, 1, delta=tol)
開發者ID:enthought,項目名稱:pyql,代碼行數:73,代碼來源:test_hybridhestonhullwhite_process.py


注:本文中的quantlib.instruments.option.VanillaOption.implied_volatility方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。