本文整理匯總了Python中qiita_db.metadata_template.sample_template.SampleTemplate.create方法的典型用法代碼示例。如果您正苦於以下問題:Python SampleTemplate.create方法的具體用法?Python SampleTemplate.create怎麽用?Python SampleTemplate.create使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類qiita_db.metadata_template.sample_template.SampleTemplate
的用法示例。
在下文中一共展示了SampleTemplate.create方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_sample_template
# 需要導入模塊: from qiita_db.metadata_template.sample_template import SampleTemplate [as 別名]
# 或者: from qiita_db.metadata_template.sample_template.SampleTemplate import create [as 別名]
def create_sample_template(fp, study, is_mapping_file, data_type=None):
"""Creates a sample template
Parameters
----------
fp : str
The file path to the template file
study : qiita_db.study.Study
The study to add the sample template to
is_mapping_file : bool
Whether `fp` contains a mapping file or a sample template
data_type : str, optional
If `is_mapping_file` is True, the data type of the prep template to be
created
Returns
-------
dict of {str: str}
A dict of the form {'status': str, 'message': str}
"""
# The imports need to be in here because this code is executed in
# the ipython workers
import warnings
from os import remove
from qiita_db.metadata_template.sample_template import SampleTemplate
from qiita_db.metadata_template.util import load_template_to_dataframe
from qiita_ware.metadata_pipeline import (
create_templates_from_qiime_mapping_file)
status = 'success'
msg = ''
try:
with warnings.catch_warnings(record=True) as warns:
if is_mapping_file:
create_templates_from_qiime_mapping_file(fp, study,
data_type)
else:
SampleTemplate.create(load_template_to_dataframe(fp),
study)
remove(fp)
# join all the warning messages into one. Note that this
# info will be ignored if an exception is raised
if warns:
msg = '\n'.join(set(str(w.message) for w in warns))
status = 'warning'
except Exception as e:
# Some error occurred while processing the sample template
# Show the error to the user so they can fix the template
status = 'danger'
msg = str(e)
return {'status': status, 'message': msg}
示例2: test_get_lat_longs_EMP_portal
# 需要導入模塊: from qiita_db.metadata_template.sample_template import SampleTemplate [as 別名]
# 或者: from qiita_db.metadata_template.sample_template.SampleTemplate import create [as 別名]
def test_get_lat_longs_EMP_portal(self):
info = {
'timeseries_type_id': 1,
'lab_person_id': None,
'principal_investigator_id': 3,
'metadata_complete': False,
'mixs_compliant': True,
'study_description': 'desc',
'study_alias': 'alias',
'study_abstract': 'abstract'}
study = Study.create(User('[email protected]'), 'test_study_1', efo=[1],
info=info)
Portal('EMP').add_studies([study.id])
md = {
'my.sample': {
'physical_specimen_location': 'location1',
'physical_specimen_remaining': True,
'dna_extracted': True,
'sample_type': 'type1',
'collection_timestamp': datetime(2014, 5, 29, 12, 24, 51),
'host_subject_id': 'NotIdentified',
'Description': 'Test Sample 4',
'str_column': 'Value for sample 4',
'int_column': 4,
'latitude': 42.42,
'longitude': 41.41,
'taxon_id': 9606,
'scientific_name': 'homo sapiens'}
}
md_ext = pd.DataFrame.from_dict(md, orient='index')
SampleTemplate.create(md_ext, study)
qiita_config.portal = 'EMP'
obs = get_lat_longs()
exp = [[42.42, 41.41]]
self.assertItemsEqual(obs, exp)
示例3: test_delete_sample_template
# 需要導入模塊: from qiita_db.metadata_template.sample_template import SampleTemplate [as 別名]
# 或者: from qiita_db.metadata_template.sample_template.SampleTemplate import create [as 別名]
def test_delete_sample_template(self):
# Error case
job = self._create_job('delete_sample_template', {'study': 1})
private_task(job.id)
self.assertEqual(job.status, 'error')
self.assertIn("Sample template cannot be erased because there are "
"prep templates associated", job.log.msg)
# Success case
info = {"timeseries_type_id": '1',
"metadata_complete": 'true',
"mixs_compliant": 'true',
"number_samples_collected": 25,
"number_samples_promised": 28,
"study_alias": "TDST",
"study_description": "Test delete sample template",
"study_abstract": "Test delete sample template",
"principal_investigator_id": StudyPerson(1)}
study = Study.create(User('[email protected]'),
"Delete Sample Template test", info)
metadata = pd.DataFrame.from_dict(
{'Sample1': {'physical_specimen_location': 'location1',
'physical_specimen_remaining': 'true',
'dna_extracted': 'true',
'sample_type': 'type1',
'collection_timestamp': '2014-05-29 12:24:15',
'host_subject_id': 'NotIdentified',
'Description': 'Test Sample 1',
'latitude': '42.42',
'longitude': '41.41',
'taxon_id': '9606',
'scientific_name': 'homo sapiens'}},
orient='index', dtype=str)
SampleTemplate.create(metadata, study)
job = self._create_job('delete_sample_template', {'study': study.id})
private_task(job.id)
self.assertEqual(job.status, 'success')
self.assertFalse(SampleTemplate.exists(study.id))
示例4: test_sample_template_handler_patch_request
# 需要導入模塊: from qiita_db.metadata_template.sample_template import SampleTemplate [as 別名]
# 或者: from qiita_db.metadata_template.sample_template.SampleTemplate import create [as 別名]
def test_sample_template_handler_patch_request(self):
user = User('[email protected]')
# Test user doesn't have access
with self.assertRaisesRegexp(HTTPError,
'User does not have access to study'):
sample_template_handler_patch_request(
User('[email protected]'), "remove",
"/1/columns/season_environment/")
# Test study doesn't exist
with self.assertRaisesRegexp(HTTPError, 'Study does not exist'):
sample_template_handler_patch_request(
user, "remove", "/10000/columns/season_environment/")
# Test sample template doesn't exist
new_study = self._create_study('Patching test')
with self.assertRaisesRegexp(HTTPError,
"Study %s doesn't have sample information"
% new_study.id):
sample_template_handler_patch_request(
user, "remove", "/%s/columns/season_environment/"
% new_study.id)
# Test wrong operation value
with self.assertRaisesRegexp(
HTTPError, 'Operation add not supported. Current supported '
'operations: remove.'):
sample_template_handler_patch_request(
user, 'add', '/1/columns/season_environment')
# Test wrong path parameter < 2
with self.assertRaisesRegexp(HTTPError, 'Incorrect path parameter'):
sample_template_handler_patch_request(user, 'ignored', '1')
# TESTS FOR OPERATION: remove
# Test wrong path parameter
with self.assertRaisesRegexp(HTTPError, 'Incorrect path parameter'):
sample_template_handler_patch_request(
user, 'remove', '/1/season_environment/')
# Add sample information to the new study so we can delete one column
# without affecting the other tests
md = pd.DataFrame.from_dict(
{'Sample1': {'col1': 'val1', 'col2': 'val2'}},
orient='index', dtype=str)
st = SampleTemplate.create(md, new_study)
# Test success
obs = sample_template_handler_patch_request(
user, "remove", "/%s/columns/col2/"
% new_study.id)
self.assertEqual(obs.keys(), ['job'])
job_info = r_client.get('sample_template_%s' % new_study.id)
self.assertIsNotNone(job_info)
# Wait until the job is done
wait_for_processing_job(loads(job_info)['job_id'])
self.assertNotIn('col2', st.categories())
# TESTS FOR OPERATION: replace
# Test incorrect path parameter with replace
with self.assertRaisesRegexp(HTTPError, 'Incorrect path parameter'):
sample_template_handler_patch_request(user, "replace", "/1/")
# Test attribute not found
with self.assertRaisesRegexp(HTTPError, 'Attribute name not found'):
sample_template_handler_patch_request(user, "replace", "/1/name")
# Test missing value
with self.assertRaisesRegexp(HTTPError,
'Value is required when updating sample '
'information'):
sample_template_handler_patch_request(user, "replace", "/1/data")
# Test file doesn't exist
with self.assertRaisesRegexp(HTTPError, 'Filepath not found'):
sample_template_handler_patch_request(user, "replace", "/1/data",
req_value='DoesNotExist')
# Test success
obs = sample_template_handler_patch_request(
user, "replace", "/1/data", req_value='uploaded_file.txt')
self.assertEqual(obs.keys(), ['job'])
job_info = r_client.get('sample_template_1')
self.assertIsNotNone(job_info)
# Wait until the job is done
wait_for_processing_job(loads(job_info)['job_id'])
示例5: generate_new_study_with_preprocessed_data
# 需要導入模塊: from qiita_db.metadata_template.sample_template import SampleTemplate [as 別名]
# 或者: from qiita_db.metadata_template.sample_template.SampleTemplate import create [as 別名]
def generate_new_study_with_preprocessed_data(self):
"""Creates a new study up to the processed data for testing"""
# ignoring warnings generated when adding templates
simplefilter("ignore")
info = {
"timeseries_type_id": 1,
"metadata_complete": True,
"mixs_compliant": True,
"number_samples_collected": 3,
"number_samples_promised": 3,
"study_alias": "Test EBI",
"study_description": "Study for testing EBI",
"study_abstract": "Study for testing EBI",
"emp_person_id": StudyPerson(2),
"principal_investigator_id": StudyPerson(3),
"lab_person_id": StudyPerson(1)
}
study = Study.create(User('[email protected]'), "Test EBI study", [1], info)
metadata_dict = {
'Sample1': {'collection_timestamp': datetime(2015, 6, 1, 7, 0, 0),
'physical_specimen_location': 'location1',
'taxon_id': 9606,
'scientific_name': 'homo sapiens',
'Description': 'Test Sample 1'},
'Sample2': {'collection_timestamp': datetime(2015, 6, 2, 7, 0, 0),
'physical_specimen_location': 'location1',
'taxon_id': 9606,
'scientific_name': 'homo sapiens',
'Description': 'Test Sample 2'},
'Sample3': {'collection_timestamp': datetime(2015, 6, 3, 7, 0, 0),
'physical_specimen_location': 'location1',
'taxon_id': 9606,
'scientific_name': 'homo sapiens',
'Description': 'Test Sample 3'}
}
metadata = pd.DataFrame.from_dict(metadata_dict, orient='index',
dtype=str)
SampleTemplate.create(metadata, study)
metadata_dict = {
'Sample1': {'primer': 'GTGCCAGCMGCCGCGGTAA',
'barcode': 'CGTAGAGCTCTC',
'center_name': 'KnightLab',
'platform': 'ILLUMINA',
'instrument_model': 'Illumina MiSeq',
'library_construction_protocol': 'Protocol ABC',
'experiment_design_description': "Random value 1"},
'Sample2': {'primer': 'GTGCCAGCMGCCGCGGTAA',
'barcode': 'CGTAGAGCTCTA',
'center_name': 'KnightLab',
'platform': 'ILLUMINA',
'instrument_model': 'Illumina MiSeq',
'library_construction_protocol': 'Protocol ABC',
'experiment_design_description': "Random value 2"},
'Sample3': {'primer': 'GTGCCAGCMGCCGCGGTAA',
'barcode': 'CGTAGAGCTCTT',
'center_name': 'KnightLab',
'platform': 'ILLUMINA',
'instrument_model': 'Illumina MiSeq',
'library_construction_protocol': 'Protocol ABC',
'experiment_design_description': "Random value 3"},
}
metadata = pd.DataFrame.from_dict(metadata_dict, orient='index',
dtype=str)
pt = PrepTemplate.create(metadata, study, "16S", 'Metagenomics')
fna_fp = join(self.temp_dir, 'seqs.fna')
demux_fp = join(self.temp_dir, 'demux.seqs')
with open(fna_fp, 'w') as f:
f.write(FASTA_EXAMPLE_2.format(study.id))
with File(demux_fp, 'w') as f:
to_hdf5(fna_fp, f)
ppd = Artifact.create(
[(demux_fp, 6)], "Demultiplexed", prep_template=pt)
return ppd
示例6: process_sample_template
# 需要導入模塊: from qiita_db.metadata_template.sample_template import SampleTemplate [as 別名]
# 或者: from qiita_db.metadata_template.sample_template.SampleTemplate import create [as 別名]
def process_sample_template(self, study, user, callback):
"""Process a sample template from the POST method
Parameters
----------
study : Study
The current study object
user : User
The current user object
callback : function
The callback function to call with the results once the processing
is done
Raises
------
HTTPError
If the sample template file does not exists
"""
# If we are on this function, the arguments "sample_template" and
# "data_type" must be defined. If not, let tornado raise its error
sample_template = self.get_argument('sample_template')
data_type = self.get_argument('data_type')
# Get the uploads folder
_, base_fp = get_mountpoint("uploads")[0]
# Get the path of the sample template in the uploads folder
fp_rsp = join(base_fp, str(study.id), sample_template)
if not exists(fp_rsp):
# The file does not exist, fail nicely
raise HTTPError(404, "This file doesn't exist: %s" % fp_rsp)
# Define here the message and message level in case of success
msg = "The sample template '%s' has been added" % sample_template
msg_level = "success"
is_mapping_file = looks_like_qiime_mapping_file(fp_rsp)
try:
if is_mapping_file and not data_type:
raise ValueError("Please, choose a data type if uploading a "
"QIIME mapping file")
with warnings.catch_warnings(record=True) as warns:
if is_mapping_file:
create_templates_from_qiime_mapping_file(fp_rsp, study,
int(data_type))
else:
SampleTemplate.create(load_template_to_dataframe(fp_rsp),
study)
remove(fp_rsp)
# join all the warning messages into one. Note that this
# info will be ignored if an exception is raised
if warns:
msg = '; '.join([convert_text_html(str(w.message))
for w in warns])
msg_level = 'warning'
except (TypeError, QiitaDBColumnError, QiitaDBExecutionError,
QiitaDBDuplicateError, IOError, ValueError, KeyError,
CParserError, QiitaDBDuplicateHeaderError,
QiitaDBError, QiitaWareError) as e:
# Some error occurred while processing the sample template
# Show the error to the user so they can fix the template
error_msg = ('parsing the QIIME mapping file'
if is_mapping_file
else 'parsing the sample template')
msg = html_error_message % (error_msg, basename(fp_rsp),
str(e))
msg = convert_text_html(msg)
msg_level = "danger"
callback((msg, msg_level, None, None, None))
示例7: create_templates_from_qiime_mapping_file
# 需要導入模塊: from qiita_db.metadata_template.sample_template import SampleTemplate [as 別名]
# 或者: from qiita_db.metadata_template.sample_template.SampleTemplate import create [as 別名]
def create_templates_from_qiime_mapping_file(fp, study, data_type):
"""Creates a sample template and a prep template from qiime mapping file
Parameters
----------
fp : str or file-like object
Path to the QIIME mapping file
study : Study
The study to which the sample template belongs to
data_type : str or int
The data_type of the prep_template
Returns
-------
(SampleTemplate, PrepTemplate)
The templates created from the QIIME mapping file
"""
qiime_map = load_template_to_dataframe(fp, index='#SampleID')
# There are a few columns in the QIIME mapping file that are special and
# we know how to deal with them
rename_cols = {
'BarcodeSequence': 'barcode',
'LinkerPrimerSequence': 'primer',
'Description': 'description',
}
if 'ReverseLinkerPrimer' in qiime_map:
rename_cols['ReverseLinkerPrimer'] = 'reverselinkerprimer'
missing = set(rename_cols).difference(qiime_map.columns)
if missing:
raise QiitaWareError(
"Error generating the templates from the QIIME mapping file. "
"Missing QIIME mapping file columns: %s" % ', '.join(missing))
qiime_map.rename(columns=rename_cols, inplace=True)
# Fix the casing in the columns that we control
qiime_map.columns = [c.lower() if c.lower() in CONTROLLED_COLS else c
for c in qiime_map.columns]
# Figure out which columns belong to the prep template
def _col_iterator(restriction_set):
for restriction in viewvalues(restriction_set):
for cols in viewkeys(restriction.columns):
yield cols
pt_cols = set(col for col in _col_iterator(PREP_TEMPLATE_COLUMNS))
data_type_str = (convert_from_id(data_type, "data_type")
if isinstance(data_type, int) else data_type)
if data_type_str in TARGET_GENE_DATA_TYPES:
pt_cols.update(
col for col in _col_iterator(PREP_TEMPLATE_COLUMNS_TARGET_GENE))
pt_cols.add('reverselinkerprimer')
qiime_cols = set(qiime_map.columns)
pt_cols = qiime_cols.intersection(pt_cols)
st_cols = qiime_cols.difference(pt_cols)
st_md = qiime_map.ix[:, st_cols]
pt_md = qiime_map.ix[:, pt_cols]
return (SampleTemplate.create(st_md, study),
PrepTemplate.create(pt_md, study, data_type))
示例8: generate_new_study_with_preprocessed_data
# 需要導入模塊: from qiita_db.metadata_template.sample_template import SampleTemplate [as 別名]
# 或者: from qiita_db.metadata_template.sample_template.SampleTemplate import create [as 別名]
def generate_new_study_with_preprocessed_data(self):
"""Creates a new study up to the processed data for testing"""
info = {
"timeseries_type_id": 1,
"metadata_complete": True,
"mixs_compliant": True,
"number_samples_collected": 3,
"number_samples_promised": 3,
"study_alias": "Test EBI",
"study_description": "Study for testing EBI",
"study_abstract": "Study for testing EBI",
"emp_person_id": StudyPerson(2),
"principal_investigator_id": StudyPerson(3),
"lab_person_id": StudyPerson(1),
}
study = Study.create(User("[email protected]"), "Test EBI study", [1], info)
metadata_dict = {
"Sample1": {
"collection_timestamp": datetime(2015, 6, 1, 7, 0, 0),
"physical_specimen_location": "location1",
"taxon_id": 9606,
"scientific_name": "homo sapiens",
"Description": "Test Sample 1",
},
"Sample2": {
"collection_timestamp": datetime(2015, 6, 2, 7, 0, 0),
"physical_specimen_location": "location1",
"taxon_id": 9606,
"scientific_name": "homo sapiens",
"Description": "Test Sample 2",
},
"Sample3": {
"collection_timestamp": datetime(2015, 6, 3, 7, 0, 0),
"physical_specimen_location": "location1",
"taxon_id": 9606,
"scientific_name": "homo sapiens",
"Description": "Test Sample 3",
},
}
metadata = pd.DataFrame.from_dict(metadata_dict, orient="index", dtype=str)
SampleTemplate.create(metadata, study)
metadata_dict = {
"Sample1": {
"primer": "GTGCCAGCMGCCGCGGTAA",
"barcode": "CGTAGAGCTCTC",
"center_name": "KnightLab",
"platform": "ILLUMINA",
"instrument_model": "Illumina MiSeq",
"library_construction_protocol": "Protocol ABC",
"experiment_design_description": "Random value 1",
},
"Sample2": {
"primer": "GTGCCAGCMGCCGCGGTAA",
"barcode": "CGTAGAGCTCTA",
"center_name": "KnightLab",
"platform": "ILLUMINA",
"instrument_model": "Illumina MiSeq",
"library_construction_protocol": "Protocol ABC",
"experiment_design_description": "Random value 2",
},
"Sample3": {
"primer": "GTGCCAGCMGCCGCGGTAA",
"barcode": "CGTAGAGCTCTT",
"center_name": "KnightLab",
"platform": "ILLUMINA",
"instrument_model": "Illumina MiSeq",
"library_construction_protocol": "Protocol ABC",
"experiment_design_description": "Random value 3",
},
}
metadata = pd.DataFrame.from_dict(metadata_dict, orient="index", dtype=str)
pt = PrepTemplate.create(metadata, study, "16S", "Metagenomics")
fna_fp = join(self.temp_dir, "seqs.fna")
demux_fp = join(self.temp_dir, "demux.seqs")
with open(fna_fp, "w") as f:
f.write(FASTA_EXAMPLE_2.format(study.id))
with File(demux_fp, "w") as f:
to_hdf5(fna_fp, f)
ppd = Artifact.create([(demux_fp, 6)], "Demultiplexed", prep_template=pt)
return ppd