當前位置: 首頁>>代碼示例>>Python>>正文


Python SubgradientSSVM.predict方法代碼示例

本文整理匯總了Python中pystruct.learners.SubgradientSSVM.predict方法的典型用法代碼示例。如果您正苦於以下問題:Python SubgradientSSVM.predict方法的具體用法?Python SubgradientSSVM.predict怎麽用?Python SubgradientSSVM.predict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pystruct.learners.SubgradientSSVM的用法示例。


在下文中一共展示了SubgradientSSVM.predict方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_multinomial_blocks_subgradient_batch

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_multinomial_blocks_subgradient_batch():
    #testing cutting plane ssvm on easy multinomial dataset
    X, Y = generate_blocks_multinomial(n_samples=10, noise=0.6, seed=1)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels, inference_method=inference_method)
    clf = SubgradientSSVM(model=crf, max_iter=100, batch_size=-1)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
    
    clf2 = SubgradientSSVM(model=crf, max_iter=100, batch_size=len(X))
    clf2.fit(X, Y)
    Y_pred2 = clf2.predict(X)
    assert_array_equal(Y, Y_pred2)
開發者ID:martinsch,項目名稱:coulomb_ssvm,代碼行數:16,代碼來源:test_subgradient_svm.py

示例2: test_binary_ssvm_attractive_potentials_edgefeaturegraph

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_binary_ssvm_attractive_potentials_edgefeaturegraph(inference_method="qpbo"):
    X, Y = generate_blocks(n_samples=10)
    crf = GridCRF(inference_method=inference_method)

    #######

    # convert X,Y to EdgeFeatureGraphCRF instances
    crf_edge = EdgeFeatureGraphCRF(inference_method=inference_method,
                                   symmetric_edge_features=[0]
                                    )
    X_edge = []
    Y_edge = []
    for i in range(X.shape[0]):
        unaries = X[i].reshape((-1, 2))
        edges = crf._get_edges(X[i])
        edge_feats = np.ones((edges.shape[0], 1))
        X_edge.append((unaries, edges, edge_feats))
        Y_edge.append((Y[i].reshape((-1,))))

    submodular_clf_edge = SubgradientSSVM(model=crf_edge, max_iter=100, C=1,
                                verbose=1,
                                zero_constraint=[4,7],
                                negativity_constraint=[5,6],
                                )

    # fit the model with non-negativity constraint on the off-diagonal potential
    submodular_clf_edge.fit(X_edge, Y_edge)

    assert submodular_clf_edge.w[5] == submodular_clf_edge.w[6] # symmetry constraint on edge features

    # # # bias doesn't matter
    # submodular_clf_edge.w += 10*np.ones(submodular_clf_edge.w.shape)
    # print len(submodular_clf_edge.w), submodular_clf_edge.w

    Y_pred = submodular_clf_edge.predict(X_edge)
    assert_array_equal(Y_edge, Y_pred)

    # try to fit the model with non-negativity constraint on the off-diagonal potential, this time
    # with inverted sign on the edge features
    X_edge_neg = [ (x[0], x[1], -x[2]) for x in X_edge ]
    submodular_clf_edge = SubgradientSSVM(model=crf_edge, max_iter=100, C=1,
                                verbose=1,
                                zero_constraint=[4,7],
                                negativity_constraint=[5,6],
                                )
    submodular_clf_edge.fit(X_edge_neg, Y_edge)
    Y_pred = submodular_clf_edge.predict(X_edge_neg)

    assert_array_equal(Y_edge, Y_pred)
開發者ID:martinsch,項目名稱:coulomb_ssvm,代碼行數:51,代碼來源:test_subgradient_svm.py

示例3: test_binary_blocks

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_binary_blocks():
    #testing subgradient ssvm on easy binary dataset
    X, Y = generate_blocks(n_samples=5)
    crf = GridCRF(inference_method=inference_method)
    clf = SubgradientSSVM(model=crf)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
開發者ID:martinsch,項目名稱:coulomb_ssvm,代碼行數:10,代碼來源:test_subgradient_svm.py

示例4: test_multinomial_checker_subgradient

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_multinomial_checker_subgradient():
    X, Y = generate_checker_multinomial(n_samples=10, noise=0.4)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels, inference_method=inference_method)
    clf = SubgradientSSVM(model=crf, max_iter=50)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
開發者ID:martinsch,項目名稱:coulomb_ssvm,代碼行數:10,代碼來源:test_subgradient_svm.py

示例5: test_binary_blocks_subgradient

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_binary_blocks_subgradient():
    #testing subgradient ssvm on easy binary dataset
    X, Y = toy.generate_blocks(n_samples=10)
    crf = GridCRF()
    clf = SubgradientSSVM(model=crf, max_iter=200, C=100, learning_rate=0.1)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
開發者ID:abhijitbendale,項目名稱:pystruct,代碼行數:10,代碼來源:test_binary_grid.py

示例6: test_binary_blocks

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_binary_blocks():
    #testing subgradient ssvm on easy binary dataset
    X, Y = generate_blocks(n_samples=5)
    crf = GridCRF(inference_method=inference_method)
    clf = SubgradientSSVM(model=crf, C=100, learning_rate=1, decay_exponent=1,
                          momentum=0, decay_t0=10)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
開發者ID:DerThorsten,項目名稱:pystruct,代碼行數:11,代碼來源:test_subgradient_svm.py

示例7: test_binary_checker_subgradient

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_binary_checker_subgradient():
    #testing subgradient ssvm on non-submodular binary dataset
    X, Y = toy.generate_checker(n_samples=10)
    crf = GridCRF()
    clf = SubgradientSSVM(model=crf, max_iter=100, C=100, momentum=.9,
                          learning_rate=0.1)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
開發者ID:abhijitbendale,項目名稱:pystruct,代碼行數:11,代碼來源:test_binary_grid.py

示例8: test_multinomial_checker_subgradient

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_multinomial_checker_subgradient():
    X, Y = toy.generate_checker_multinomial(n_samples=10, noise=0.0)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels)
    clf = SubgradientSSVM(model=crf, max_iter=50, C=10,
                          momentum=.98, learning_rate=0.01)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
開發者ID:aurora1625,項目名稱:pystruct,代碼行數:11,代碼來源:test_multinomial_grid.py

示例9: test_multinomial_blocks_subgradient

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_multinomial_blocks_subgradient():
    #testing cutting plane ssvm on easy multinomial dataset
    X, Y = generate_blocks_multinomial(n_samples=10, noise=0.3, seed=1)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels, inference_method=inference_method)
    clf = SubgradientSSVM(model=crf, max_iter=50, C=10, momentum=.98,
                          learning_rate=0.001)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
開發者ID:DerThorsten,項目名稱:pystruct,代碼行數:12,代碼來源:test_subgradient_svm.py

示例10: test_blobs_2d_subgradient

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_blobs_2d_subgradient():
    # make two gaussian blobs
    X, Y = make_blobs(n_samples=80, centers=3, random_state=42)
    # we have to add a constant 1 feature by hand :-/
    X = np.hstack([X, np.ones((X.shape[0], 1))])
    X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:]

    pbl = MultiClassClf(n_features=3, n_classes=3)
    svm = SubgradientSSVM(pbl, C=1000)

    svm.fit(X_train, Y_train)
    assert_array_equal(Y_test, np.hstack(svm.predict(X_test)))
開發者ID:DerThorsten,項目名稱:pystruct,代碼行數:14,代碼來源:test_crammer_singer_svm.py

示例11: test_objective

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_objective():
    # test that LatentSubgradientSSVM does the same as SubgradientSVM,
    # in particular that it has the same loss, if there are no latent states.
    X, Y = toy.generate_blocks_multinomial(n_samples=10)
    n_labels = 3
    crfl = LatentGridCRF(n_labels=n_labels, n_states_per_label=1)
    clfl = LatentSubgradientSSVM(model=crfl, max_iter=50, C=10.,
                                 learning_rate=0.001, momentum=0.98,
                                 decay_exponent=0)
    clfl.w = np.zeros(crfl.size_psi)  # this disables random init
    clfl.fit(X, Y)

    crf = GridCRF(n_states=n_labels)
    clf = SubgradientSSVM(model=crf, max_iter=50, C=10.,
                          learning_rate=0.001, momentum=0.98, decay_exponent=0)
    clf.fit(X, Y)
    assert_array_almost_equal(clf.w, clfl.w)
    assert_array_equal(clf.predict(X), Y)
    assert_almost_equal(clf.objective_curve_[-1], clfl.objective_curve_[-1])
開發者ID:aurora1625,項目名稱:pystruct,代碼行數:21,代碼來源:test_subgradient_latent_svm.py

示例12: test_objective

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_objective():
    # test that SubgradientLatentSSVM does the same as SubgradientSVM,
    # in particular that it has the same loss, if there are no latent states.
    X, Y = generate_blocks_multinomial(n_samples=10, noise=.3, seed=1)
    inference_method = get_installed(["qpbo", "ad3", "lp"])[0]
    n_labels = 3
    crfl = LatentGridCRF(n_labels=n_labels, n_states_per_label=1,
                         inference_method=inference_method)
    clfl = SubgradientLatentSSVM(model=crfl, max_iter=20, C=10.,
                                 learning_rate=0.001, momentum=0.98)
    crfl.initialize(X, Y)
    clfl.w = np.zeros(crfl.size_joint_feature)  # this disables random init
    clfl.fit(X, Y)

    crf = GridCRF(n_states=n_labels, inference_method=inference_method)
    clf = SubgradientSSVM(model=crf, max_iter=20, C=10., learning_rate=0.001,
                          momentum=0.98)
    clf.fit(X, Y)
    assert_array_almost_equal(clf.w, clfl.w)
    assert_almost_equal(clf.objective_curve_[-1], clfl.objective_curve_[-1])
    assert_array_equal(clf.predict(X), clfl.predict(X))
    assert_array_equal(clf.predict(X), Y)
開發者ID:UIKit0,項目名稱:pystruct,代碼行數:24,代碼來源:test_subgradient_latent_svm.py

示例13: print

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
print("Score with pystruct n-slack ssvm: %f (took %f seconds)"
      % (np.mean(y_pred == y_test), time_n_slack_svm))

## 1-slack cutting plane ssvm
start = time()
one_slack_svm.fit(X_train_bias, y_train)
time_one_slack_svm = time() - start
y_pred = np.hstack(one_slack_svm.predict(X_test_bias))
print("Score with pystruct 1-slack ssvm: %f (took %f seconds)"
      % (np.mean(y_pred == y_test), time_one_slack_svm))

#online subgradient ssvm
start = time()
subgradient_svm.fit(X_train_bias, y_train)
time_subgradient_svm = time() - start
y_pred = np.hstack(subgradient_svm.predict(X_test_bias))

print("Score with pystruct subgradient ssvm: %f (took %f seconds)"
      % (np.mean(y_pred == y_test), time_subgradient_svm))

# the standard one-vs-rest multi-class would probably be as good and faster
# but solving a different model
libsvm = LinearSVC(multi_class='crammer_singer', C=.1)
start = time()
libsvm.fit(X_train, y_train)
time_libsvm = time() - start
print("Score with sklearn and libsvm: %f (took %f seconds)"
      % (libsvm.score(X_test, y_test), time_libsvm))


start = time()
開發者ID:DATAQC,項目名稱:pystruct,代碼行數:33,代碼來源:multi_class_svm.py

示例14: conlleval_fmt

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
            test_conll_os_ssvm = conlleval_fmt(iob_test, test_os_ssvm_preds)
            test_conll_os_ssvm_file = open('test_conll_os_ssvm.txt', 'wb')
            for sentence in test_conll_os_ssvm:
                test_conll_os_ssvm_file.write(bytes(sentence, 'UTF-8'))
            test_conll_os_ssvm_file.close()
            print(conlleval_results('test_conll_os_ssvm.txt'))

        if args.subgrad:
            ### fit subgradient ssvm                                                       
            crf = ChainCRF()                                                            
            sg_ssvm = SubgradientSSVM(crf, max_iter=200, 
                    verbose=args.verbose, n_jobs=-1,                           
                    use_memmapping_pool=0, show_loss_every=20, shuffle=True)                                            
            sg_ssvm.fit(list(X_train_tsvd), y_train)                                    
            test_sg_ssvm_preds = [[id2label[i] for i in sent]                           
                    for sent in sg_ssvm.predict(X_test_tsvd)]                           
            test_conll_sg_ssvm = conlleval_fmt(iob_test, test_sg_ssvm_preds)            
            test_conll_sg_ssvm_file = open('test_conll_sg_ssvm.txt', 'wb')              
            for sentence in test_conll_sg_ssvm:                                         
                test_conll_sg_ssvm_file.write(bytes(sentence, 'UTF-8'))                                 
            test_conll_sg_ssvm_file.close()                                             
            print(conlleval_results('test_conll_sg_ssvm.txt'))       

    if args.evals:
        print(conlleval_results('test_conll_svc.txt'))
        print(conlleval_results('test_conll_crfsuite.txt'))
        print(conlleval_results('test_conll_searn.txt'))
        print(conlleval_results('test_conll_os_ssvm.txt'))
        print(conlleval_results('test_conll_sg_ssvm.txt'))       

開發者ID:robbymeals,項目名稱:word_vectors,代碼行數:31,代碼來源:chunking_word2vec_pystruct.py

示例15: len

# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
n_gestures = len(np.unique(gesture_labels))
frame_prior_train, frame_transition_matrix_train = calculate_hmm_params(frame_labels, n_gestures)
gesture_prior_train, gesture_transition_matrix_train = calculate_hmm_params(gesture_labels, n_gestures)

print "Unary (frame) score:", frame_clf_train.score(np.vstack(frame_hists_train), np.hstack(frame_labels))
print "Unary (gesture) score:", gesture_clf_train.score(np.vstack(gesture_hists_train), np.hstack(gesture_labels))

gesture_transition_matrix_train = np.ones([n_gestures,3])/3.

# Markov CRF
markovCRF = MarkovCRF(n_states=n_gestures, clf=frame_clf_train,
				 prior=frame_prior_train, transition=frame_transition_matrix_train,
				 inference_method='dai')
markov_svm = SubgradientSSVM(markovCRF, verbose=1, C=1., n_jobs=1)
markov_svm.fit(frame_hists_train, frame_labels)
m_predict = markov_svm.predict(frame_hists_train)
print 'Markov w:', markov_svm.w
print 'Markov CRF score: {}%'.format(100*np.sum([np.sum(np.equal(m_predict[i],x)) for i,x in enumerate(frame_labels)])  / np.sum([np.size(x) for x in frame_labels], dtype=np.float))

# semi-Markov CRF
sm_crf = SemiMarkovCRF(n_states=n_gestures,clf=gesture_clf_train,
				 prior=gesture_prior_train, transition_matrix=gesture_transition_matrix_train)
sm_svm = SubgradientSSVM(sm_crf, verbose=1, C=1., n_jobs=1)
sm_svm.fit(frame_hists_train, frame_labels)
sm_predict = sm_svm.predict(frame_hists_train)
print 'Semi-Markov w:', sm_svm.w
print 'Semi-Markov CRF score: {}%'.format(100*np.sum([np.sum(sm_predict[i]==x) for i,x in enumerate(frame_labels)])  / np.sum([np.size(x) for x in frame_labels], dtype=np.float))

# Markov semi-Markov CRF
MarkovSemiMarkovCRF = MarkovSemiMarkovCRF(n_states=n_gestures,
				 markov_prior=frame_prior_train, markov_transition=frame_transition_matrix_train,
開發者ID:colincsl,項目名稱:StructuredModels,代碼行數:33,代碼來源:MsM_Daily_Activities.py


注:本文中的pystruct.learners.SubgradientSSVM.predict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。