本文整理匯總了Python中pystruct.learners.SubgradientSSVM.predict方法的典型用法代碼示例。如果您正苦於以下問題:Python SubgradientSSVM.predict方法的具體用法?Python SubgradientSSVM.predict怎麽用?Python SubgradientSSVM.predict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pystruct.learners.SubgradientSSVM
的用法示例。
在下文中一共展示了SubgradientSSVM.predict方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_multinomial_blocks_subgradient_batch
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_multinomial_blocks_subgradient_batch():
#testing cutting plane ssvm on easy multinomial dataset
X, Y = generate_blocks_multinomial(n_samples=10, noise=0.6, seed=1)
n_labels = len(np.unique(Y))
crf = GridCRF(n_states=n_labels, inference_method=inference_method)
clf = SubgradientSSVM(model=crf, max_iter=100, batch_size=-1)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
clf2 = SubgradientSSVM(model=crf, max_iter=100, batch_size=len(X))
clf2.fit(X, Y)
Y_pred2 = clf2.predict(X)
assert_array_equal(Y, Y_pred2)
示例2: test_binary_ssvm_attractive_potentials_edgefeaturegraph
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_binary_ssvm_attractive_potentials_edgefeaturegraph(inference_method="qpbo"):
X, Y = generate_blocks(n_samples=10)
crf = GridCRF(inference_method=inference_method)
#######
# convert X,Y to EdgeFeatureGraphCRF instances
crf_edge = EdgeFeatureGraphCRF(inference_method=inference_method,
symmetric_edge_features=[0]
)
X_edge = []
Y_edge = []
for i in range(X.shape[0]):
unaries = X[i].reshape((-1, 2))
edges = crf._get_edges(X[i])
edge_feats = np.ones((edges.shape[0], 1))
X_edge.append((unaries, edges, edge_feats))
Y_edge.append((Y[i].reshape((-1,))))
submodular_clf_edge = SubgradientSSVM(model=crf_edge, max_iter=100, C=1,
verbose=1,
zero_constraint=[4,7],
negativity_constraint=[5,6],
)
# fit the model with non-negativity constraint on the off-diagonal potential
submodular_clf_edge.fit(X_edge, Y_edge)
assert submodular_clf_edge.w[5] == submodular_clf_edge.w[6] # symmetry constraint on edge features
# # # bias doesn't matter
# submodular_clf_edge.w += 10*np.ones(submodular_clf_edge.w.shape)
# print len(submodular_clf_edge.w), submodular_clf_edge.w
Y_pred = submodular_clf_edge.predict(X_edge)
assert_array_equal(Y_edge, Y_pred)
# try to fit the model with non-negativity constraint on the off-diagonal potential, this time
# with inverted sign on the edge features
X_edge_neg = [ (x[0], x[1], -x[2]) for x in X_edge ]
submodular_clf_edge = SubgradientSSVM(model=crf_edge, max_iter=100, C=1,
verbose=1,
zero_constraint=[4,7],
negativity_constraint=[5,6],
)
submodular_clf_edge.fit(X_edge_neg, Y_edge)
Y_pred = submodular_clf_edge.predict(X_edge_neg)
assert_array_equal(Y_edge, Y_pred)
示例3: test_binary_blocks
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_binary_blocks():
#testing subgradient ssvm on easy binary dataset
X, Y = generate_blocks(n_samples=5)
crf = GridCRF(inference_method=inference_method)
clf = SubgradientSSVM(model=crf)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
示例4: test_multinomial_checker_subgradient
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_multinomial_checker_subgradient():
X, Y = generate_checker_multinomial(n_samples=10, noise=0.4)
n_labels = len(np.unique(Y))
crf = GridCRF(n_states=n_labels, inference_method=inference_method)
clf = SubgradientSSVM(model=crf, max_iter=50)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
示例5: test_binary_blocks_subgradient
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_binary_blocks_subgradient():
#testing subgradient ssvm on easy binary dataset
X, Y = toy.generate_blocks(n_samples=10)
crf = GridCRF()
clf = SubgradientSSVM(model=crf, max_iter=200, C=100, learning_rate=0.1)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
示例6: test_binary_blocks
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_binary_blocks():
#testing subgradient ssvm on easy binary dataset
X, Y = generate_blocks(n_samples=5)
crf = GridCRF(inference_method=inference_method)
clf = SubgradientSSVM(model=crf, C=100, learning_rate=1, decay_exponent=1,
momentum=0, decay_t0=10)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
示例7: test_binary_checker_subgradient
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_binary_checker_subgradient():
#testing subgradient ssvm on non-submodular binary dataset
X, Y = toy.generate_checker(n_samples=10)
crf = GridCRF()
clf = SubgradientSSVM(model=crf, max_iter=100, C=100, momentum=.9,
learning_rate=0.1)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
示例8: test_multinomial_checker_subgradient
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_multinomial_checker_subgradient():
X, Y = toy.generate_checker_multinomial(n_samples=10, noise=0.0)
n_labels = len(np.unique(Y))
crf = GridCRF(n_states=n_labels)
clf = SubgradientSSVM(model=crf, max_iter=50, C=10,
momentum=.98, learning_rate=0.01)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
示例9: test_multinomial_blocks_subgradient
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_multinomial_blocks_subgradient():
#testing cutting plane ssvm on easy multinomial dataset
X, Y = generate_blocks_multinomial(n_samples=10, noise=0.3, seed=1)
n_labels = len(np.unique(Y))
crf = GridCRF(n_states=n_labels, inference_method=inference_method)
clf = SubgradientSSVM(model=crf, max_iter=50, C=10, momentum=.98,
learning_rate=0.001)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
示例10: test_blobs_2d_subgradient
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_blobs_2d_subgradient():
# make two gaussian blobs
X, Y = make_blobs(n_samples=80, centers=3, random_state=42)
# we have to add a constant 1 feature by hand :-/
X = np.hstack([X, np.ones((X.shape[0], 1))])
X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:]
pbl = MultiClassClf(n_features=3, n_classes=3)
svm = SubgradientSSVM(pbl, C=1000)
svm.fit(X_train, Y_train)
assert_array_equal(Y_test, np.hstack(svm.predict(X_test)))
示例11: test_objective
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_objective():
# test that LatentSubgradientSSVM does the same as SubgradientSVM,
# in particular that it has the same loss, if there are no latent states.
X, Y = toy.generate_blocks_multinomial(n_samples=10)
n_labels = 3
crfl = LatentGridCRF(n_labels=n_labels, n_states_per_label=1)
clfl = LatentSubgradientSSVM(model=crfl, max_iter=50, C=10.,
learning_rate=0.001, momentum=0.98,
decay_exponent=0)
clfl.w = np.zeros(crfl.size_psi) # this disables random init
clfl.fit(X, Y)
crf = GridCRF(n_states=n_labels)
clf = SubgradientSSVM(model=crf, max_iter=50, C=10.,
learning_rate=0.001, momentum=0.98, decay_exponent=0)
clf.fit(X, Y)
assert_array_almost_equal(clf.w, clfl.w)
assert_array_equal(clf.predict(X), Y)
assert_almost_equal(clf.objective_curve_[-1], clfl.objective_curve_[-1])
示例12: test_objective
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
def test_objective():
# test that SubgradientLatentSSVM does the same as SubgradientSVM,
# in particular that it has the same loss, if there are no latent states.
X, Y = generate_blocks_multinomial(n_samples=10, noise=.3, seed=1)
inference_method = get_installed(["qpbo", "ad3", "lp"])[0]
n_labels = 3
crfl = LatentGridCRF(n_labels=n_labels, n_states_per_label=1,
inference_method=inference_method)
clfl = SubgradientLatentSSVM(model=crfl, max_iter=20, C=10.,
learning_rate=0.001, momentum=0.98)
crfl.initialize(X, Y)
clfl.w = np.zeros(crfl.size_joint_feature) # this disables random init
clfl.fit(X, Y)
crf = GridCRF(n_states=n_labels, inference_method=inference_method)
clf = SubgradientSSVM(model=crf, max_iter=20, C=10., learning_rate=0.001,
momentum=0.98)
clf.fit(X, Y)
assert_array_almost_equal(clf.w, clfl.w)
assert_almost_equal(clf.objective_curve_[-1], clfl.objective_curve_[-1])
assert_array_equal(clf.predict(X), clfl.predict(X))
assert_array_equal(clf.predict(X), Y)
示例13: print
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
print("Score with pystruct n-slack ssvm: %f (took %f seconds)"
% (np.mean(y_pred == y_test), time_n_slack_svm))
## 1-slack cutting plane ssvm
start = time()
one_slack_svm.fit(X_train_bias, y_train)
time_one_slack_svm = time() - start
y_pred = np.hstack(one_slack_svm.predict(X_test_bias))
print("Score with pystruct 1-slack ssvm: %f (took %f seconds)"
% (np.mean(y_pred == y_test), time_one_slack_svm))
#online subgradient ssvm
start = time()
subgradient_svm.fit(X_train_bias, y_train)
time_subgradient_svm = time() - start
y_pred = np.hstack(subgradient_svm.predict(X_test_bias))
print("Score with pystruct subgradient ssvm: %f (took %f seconds)"
% (np.mean(y_pred == y_test), time_subgradient_svm))
# the standard one-vs-rest multi-class would probably be as good and faster
# but solving a different model
libsvm = LinearSVC(multi_class='crammer_singer', C=.1)
start = time()
libsvm.fit(X_train, y_train)
time_libsvm = time() - start
print("Score with sklearn and libsvm: %f (took %f seconds)"
% (libsvm.score(X_test, y_test), time_libsvm))
start = time()
示例14: conlleval_fmt
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
test_conll_os_ssvm = conlleval_fmt(iob_test, test_os_ssvm_preds)
test_conll_os_ssvm_file = open('test_conll_os_ssvm.txt', 'wb')
for sentence in test_conll_os_ssvm:
test_conll_os_ssvm_file.write(bytes(sentence, 'UTF-8'))
test_conll_os_ssvm_file.close()
print(conlleval_results('test_conll_os_ssvm.txt'))
if args.subgrad:
### fit subgradient ssvm
crf = ChainCRF()
sg_ssvm = SubgradientSSVM(crf, max_iter=200,
verbose=args.verbose, n_jobs=-1,
use_memmapping_pool=0, show_loss_every=20, shuffle=True)
sg_ssvm.fit(list(X_train_tsvd), y_train)
test_sg_ssvm_preds = [[id2label[i] for i in sent]
for sent in sg_ssvm.predict(X_test_tsvd)]
test_conll_sg_ssvm = conlleval_fmt(iob_test, test_sg_ssvm_preds)
test_conll_sg_ssvm_file = open('test_conll_sg_ssvm.txt', 'wb')
for sentence in test_conll_sg_ssvm:
test_conll_sg_ssvm_file.write(bytes(sentence, 'UTF-8'))
test_conll_sg_ssvm_file.close()
print(conlleval_results('test_conll_sg_ssvm.txt'))
if args.evals:
print(conlleval_results('test_conll_svc.txt'))
print(conlleval_results('test_conll_crfsuite.txt'))
print(conlleval_results('test_conll_searn.txt'))
print(conlleval_results('test_conll_os_ssvm.txt'))
print(conlleval_results('test_conll_sg_ssvm.txt'))
示例15: len
# 需要導入模塊: from pystruct.learners import SubgradientSSVM [as 別名]
# 或者: from pystruct.learners.SubgradientSSVM import predict [as 別名]
n_gestures = len(np.unique(gesture_labels))
frame_prior_train, frame_transition_matrix_train = calculate_hmm_params(frame_labels, n_gestures)
gesture_prior_train, gesture_transition_matrix_train = calculate_hmm_params(gesture_labels, n_gestures)
print "Unary (frame) score:", frame_clf_train.score(np.vstack(frame_hists_train), np.hstack(frame_labels))
print "Unary (gesture) score:", gesture_clf_train.score(np.vstack(gesture_hists_train), np.hstack(gesture_labels))
gesture_transition_matrix_train = np.ones([n_gestures,3])/3.
# Markov CRF
markovCRF = MarkovCRF(n_states=n_gestures, clf=frame_clf_train,
prior=frame_prior_train, transition=frame_transition_matrix_train,
inference_method='dai')
markov_svm = SubgradientSSVM(markovCRF, verbose=1, C=1., n_jobs=1)
markov_svm.fit(frame_hists_train, frame_labels)
m_predict = markov_svm.predict(frame_hists_train)
print 'Markov w:', markov_svm.w
print 'Markov CRF score: {}%'.format(100*np.sum([np.sum(np.equal(m_predict[i],x)) for i,x in enumerate(frame_labels)]) / np.sum([np.size(x) for x in frame_labels], dtype=np.float))
# semi-Markov CRF
sm_crf = SemiMarkovCRF(n_states=n_gestures,clf=gesture_clf_train,
prior=gesture_prior_train, transition_matrix=gesture_transition_matrix_train)
sm_svm = SubgradientSSVM(sm_crf, verbose=1, C=1., n_jobs=1)
sm_svm.fit(frame_hists_train, frame_labels)
sm_predict = sm_svm.predict(frame_hists_train)
print 'Semi-Markov w:', sm_svm.w
print 'Semi-Markov CRF score: {}%'.format(100*np.sum([np.sum(sm_predict[i]==x) for i,x in enumerate(frame_labels)]) / np.sum([np.size(x) for x in frame_labels], dtype=np.float))
# Markov semi-Markov CRF
MarkovSemiMarkovCRF = MarkovSemiMarkovCRF(n_states=n_gestures,
markov_prior=frame_prior_train, markov_transition=frame_transition_matrix_train,