本文整理匯總了Python中pynusmv.be.expression.Be類的典型用法代碼示例。如果您正苦於以下問題:Python Be類的具體用法?Python Be怎麽用?Python Be使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Be類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_globally_no_loop
def test_globally_no_loop(self):
with Configure(self, __file__, "/models/flipflops.smv"):
fsm = self.befsm
formula = self.nnf("G (a <-> !b)")
# bound 0
ref_expr= ltlspec.bounded_semantics_without_loop(fsm, formula, 0)
expr = ltlspec.bounded_semantics_without_loop_at_offset(fsm, formula, 0, 0, 0)
self.assertEqual(canonical_cnf(expr), canonical_cnf(ref_expr))
# bound 1
ref_expr= ltlspec.bounded_semantics_without_loop(fsm, formula, 1)
expr = ltlspec.bounded_semantics_without_loop_at_offset(fsm, formula, 0, 1, 0)
self.assertEqual(canonical_cnf(expr), canonical_cnf(ref_expr))
# ---- other offset ----
# bound 0
offset = 1
ref_expr= Be.false(fsm.encoding.manager)
expr = ltlspec.bounded_semantics_without_loop_at_offset(fsm, formula, 0, 0, offset)
self.assertEqual(canonical_cnf(expr), canonical_cnf(ref_expr))
# bound 1
offset = 1
ref_expr= Be.false(fsm.encoding.manager)
expr = ltlspec.bounded_semantics_without_loop_at_offset(fsm, formula, 0, 1, offset)
self.assertEqual(canonical_cnf(expr), canonical_cnf(ref_expr))
示例2: test_false
def test_false(self):
with self.assertRaises(Exception):
Be.false(None)
expr = Be.false(self._manager)
self.assertFalse(expr.is_true())
self.assertTrue(expr.is_false())
self.assertTrue(expr.is_constant())
示例3: bounded_semantics
def bounded_semantics(self, fsm, k, fairness=True):
"""
Returns a boolean expression corresponding to the bounded semantics of
the formula denoted by `self` on a path of length k. This combines both
the semantics in case of a loopy path and the case of a non-loopy path.
.. note::
This function takes the same approach as NuSMV and does not enforce
the absence of loop when using the more restrictive semantic_no_loop.
:param fsm: the FSM representing the model. It is used to gain access
to the encoder (-> shift variables) and to obtain the list of
fairness constraints.
:param k: the last time that exists in the universe of this expression
:param fairness: a flag indicating whether or not the fairness constraints
should be taken into account while generating the formula.
:return: a boolean expression translating the bounded semantics of this
formula.
"""
enc = fsm.encoding
noloop = self.semantic_no_loop(enc, 0, k)
w_loop = Be.false(enc.manager)
for l in range(k): # [0; k-1]
fairness_cond = fairness_constraint(fsm, k, l) if fairness else Be.true(enc.manager)
w_loop |= loop_condition(enc, k, l) & fairness_cond & self.semantic_with_loop(enc, 0, k, l)
return noloop | w_loop
示例4: test_constant_with_loop
def test_constant_with_loop(self):
with tests.Configure(self, __file__, "/example.smv"):
expr = ast.Constant("TRUE")
self.assertEqual(Be.true(self.mgr), expr.semantic_with_loop(self.enc, 0, 5, 2))
expr = ast.Constant("FALSE")
self.assertEqual(Be.false(self.mgr), expr.semantic_with_loop(self.enc, 0, 5, 2))
示例5: test_bounded_semantics_without_loop
def test_bounded_semantics_without_loop(self):
# parse the ltl property
spec = Node.from_ptr(parse_ltl_spec("G ( y <= 7 )"))
# it must raise exception when the bound is not feasible
with self.assertRaises(ValueError):
ltlspec.bounded_semantics_without_loop(self.fsm, spec, bound=-1)
# verify that the generated expression corresponds to what is announced
no_loop = ltlspec.bounded_semantics_without_loop(self.fsm, spec, 10)
# globally w/o loop is false (this is just a test)
self.assertEqual(no_loop, Be.false(self.fsm.encoding.manager))
# an other more complex generation
spec = Node.from_ptr(parse_ltl_spec("F (y <= 7)"))
no_loop = ltlspec.bounded_semantics_without_loop(self.fsm, spec, 10)
#
# The generated expression is [[f]]^{0}_{k} so (! L_{k}) is not taken
# care of. And actually, NuSMV does not generate that part of the
# formula: it only enforce the loop condition when the semantics with
# loop is used
#
handcrafted = Be.false(self.fsm.encoding.manager)
y_le_seven = Wff(parse_ltl_spec("y <= 7")).to_boolean_wff().to_be(self.fsm.encoding)
for time_x in reversed(range(11)): # 11 because range 'eats' up the last step
handcrafted |= self.fsm.encoding.shift_to_time(y_le_seven, time_x)
#### debuging info #####
#print("noloop = {}".format(no_loop.to_cnf()))
#print("hancraft= {}".format(handcrafted.to_cnf()))
#print(self.fsm.encoding)
self.assertEqual(no_loop, handcrafted)
示例6: test_add_
def test_add_(self):
# using the algebraic notation
true = Be.true(self._manager)
false = Be.false(self._manager)
self.assertTrue((true + false).is_true())
self.assertFalse((true + false).is_false())
self.assertTrue((true + false).is_constant())
示例7: test_and
def test_and(self):
# using the function
true = Be.true(self._manager)
false = Be.false(self._manager)
self.assertFalse(true.and_(false).is_true())
self.assertTrue(true.and_(false).is_false())
self.assertTrue(true.and_(false).is_constant())
示例8: test__and_
def test__and_(self):
# using the keyword
true = Be.true(self._manager)
false = Be.false(self._manager)
self.assertFalse((true and false).is_true())
self.assertTrue((true and false).is_false())
self.assertTrue((true and false).is_constant())
示例9: test_sub_
def test_sub_(self):
# and not
true = Be.true(self._manager)
false = Be.false(self._manager)
self.assertTrue((true - false).is_true())
self.assertFalse((true - false).is_false())
self.assertTrue((true - false).is_constant())
示例10: bounded_semantics_at_offset
def bounded_semantics_at_offset(fsm, formula, bound, offset, fairness=True):
"""
Generates the Be [[formula]]_{bound} corresponding to the bounded semantic
of `formula` but encodes it with an `offset` long shift in the timeline of the encoder.
.. note::
This function plays the same role as `bounded_semantics_all_loops` but allows to
position the time blocks at some place we like in the encoder timeline. This is mostly
helpful if you want to devise verification methods that need to have multiple parallel
verifications. (ie. diagnosability).
Note however, that the two implementations are different.
.. warning::
So far, the only supported temporal operators are F, G, U, R, X
:param fsm: the BeFsm for which the property will be verified. Actually, it is only used to
provide the encoder used to assign the variables to some time blocks. The api was kept
this ways to keep uniformity with its non-offsetted counterpart.
:param formula: the property for which to generate a verification problem
represented in a 'node' format (subclass of :see::class:`pynusmv.node.Node`)
which corresponds to the format obtained from the ast. (remark: if you
need to manipulate [ie negate] the formula before passing it, it is
perfectly valid to pass a node decorated by `Wff.decorate`).
:param bound: the logical time bound to the problem. (Leave out the offset for this param: if you
intend to have a problem with at most 10 steps, say bound=10)
:param offset: the time offset in the encoding block where the sem of this formula will be
generated.
:param fairness: a flag indicating whether or not to take the fairness
constraint into account.
:return: a Be corresponding to the semantics of `formula` for a problem with a maximum of `bound`
steps encoded to start at time `offset` in the `fsm` encoding timeline.
"""
if bound< 0:
raise ValueError("Bound must be a positive integer")
if offset<0:
raise ValueError("The offset must be a positive integer")
enc = fsm.encoding
straight = bounded_semantics_without_loop_at_offset(fsm, formula, 0, bound, offset)
k_loop = Be.false(enc.manager)
for i in range(bound):
fairness_cond = utils.fairness_constraint(fsm, offset+bound, offset+i) \
if fairness \
else Be.true(enc.manager)
k_loop |= ( utils.loop_condition(enc, offset+bound, offset+i) \
& fairness_cond \
& bounded_semantics_with_loop_at_offset(fsm, formula, 0, bound, i, offset))
# this is just the sem of the formula
return straight | k_loop
示例11: test__mul_
def test__mul_(self):
# using algebraic notation
true = Be.true(self._manager)
false = Be.false(self._manager)
self.assertFalse((true * false).is_true())
self.assertTrue((true * false).is_false())
self.assertTrue((true * false).is_constant())
self.assertFalse((true & false).is_true())
self.assertTrue((true & false).is_false())
self.assertTrue((true & false).is_constant())
示例12: test_imply
def test_imply(self):
true = Be.true(self._manager)
false = Be.false(self._manager)
# antecedent always true
self.assertFalse(true.imply(false).is_true())
self.assertTrue(true.imply(false).is_false())
self.assertTrue(true.imply(false).is_constant())
# antecedent always false
self.assertTrue(false.imply(true).is_true())
self.assertFalse(false.imply(true).is_false())
self.assertTrue(false.imply(true).is_constant())
示例13: test_reset
def test_reset(self):
"""
Verifies that resetting the cache provokes no error
-> verifies only the absence of runtime errors since it is who RBC does
the heavy lifting, not the manager
"""
mgr = BeRbcManager.with_capacity(10)
# test it doesn't hurt to call this method even though nothing is to
# be done.
mgr.reset()
# conversion to CNF populates the hashes which are being reset so
# using this manager to perform cnf conversion makes sense if we want
# to test the reset works when it actually does something.
(Be.true(mgr) and Be.false(mgr)).to_cnf(Polarity.POSITIVE)
mgr.reset()
示例14: test_next_no_loop
def test_next_no_loop(self):
with Configure(self, __file__, "/models/flipflops.smv"):
fsm = self.befsm
formula = self.nnf("X (a <-> !b)")
# bound 0
ref_expr= ltlspec.bounded_semantics_without_loop(fsm, formula, 0)
expr = ltlspec.bounded_semantics_without_loop_at_offset(fsm, formula, 0, 0, 0)
self.assertEqual(canonical_cnf(expr), canonical_cnf(ref_expr))
# bound 1
ref_expr= ltlspec.bounded_semantics_without_loop(fsm, formula, 1)
expr = ltlspec.bounded_semantics_without_loop_at_offset(fsm, formula, 0, 1, 0)
self.assertEqual(canonical_cnf(expr), canonical_cnf(ref_expr))
# ---- other offset ----
# bound 0
offset = 1
ref_expr= Be.false(fsm.encoding.manager)
expr = ltlspec.bounded_semantics_without_loop_at_offset(fsm, formula, 0, 0, offset)
self.assertEqual(canonical_cnf(expr), canonical_cnf(ref_expr))
# bound 1
offset = 1
ref_expr= Wff.decorate(ltlspec.car(formula)).to_be(fsm.encoding)
ref_expr= fsm.encoding.shift_to_time(ref_expr, offset+1)
expr = ltlspec.bounded_semantics_without_loop_at_offset(fsm, formula, 0, 1, offset)
self.assertEqual(canonical_cnf(expr), canonical_cnf(ref_expr))
示例15: loop_condition
def loop_condition(enc, k, l):
"""
This function generates a Be expression representing the loop condition
which is necessary to determine that k->l is a backloop.
Formally, the returned constraint is denoted _{l}L_{k}
Because the transition relation is encoded in Nusmv as formula (and not as
a relation per-se), we determine the existence of a backloop between
l < k and forall var, var(i) == var(k)
That is to say: if it is possible to encounter two times the same state
(same state being all variables have the same value in both states) we know
there is a backloop on the path
.. note::
An other implementation of this function (w/ the same semantics) exists
in :mod:`pynusmv.bmc.utils`. This version is merely re-implemented to
1. show that it can be easily done
2. stick closely to the definition given in the paper by Biere et al.
(see other note)
:param fsm: the fsm on which the condition will be evaluated
:param k: the highest time
:param l: the time where the loop is assumed to start
:return: a Be expression representing the loop condition that verifies that
k-l is a loop path.
"""
cond = Be.true(enc.manager)
for v in enc.curr_variables: # for all untimed variable
vl = v.at_time[l].boolean_expression
vk = v.at_time[k].boolean_expression
cond = cond & (vl.iff(vk))
return cond