本文整理匯總了Python中pymatbridge.Matlab.run_func方法的典型用法代碼示例。如果您正苦於以下問題:Python Matlab.run_func方法的具體用法?Python Matlab.run_func怎麽用?Python Matlab.run_func使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pymatbridge.Matlab
的用法示例。
在下文中一共展示了Matlab.run_func方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: start_mlab
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
def start_mlab():
dir_path = os.path.dirname(os.path.realpath(__file__))
dir_list = ['/HHT_MATLAB_package', '/HHT_MATLAB_package/EEMD',
'/HHT_MATLAB_package/checkIMFs', '/HHT_MATLAB_package/HSA']
mlab = Matlab()
mlab.start()
for d in dir_list:
res = mlab.run_func('addpath', dir_path + d)
return mlab
示例2: network_hill
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
def network_hill(panel, prior_graph=[], lambdas=[], max_indegree=3, reg_mode='full', stdise=1, silent=0, maxtime=120):
'''
run_hill(panel)
input: dataframe
should be a T x N dataframe with T time points and N samples.
output: dict containing key 'e' and key 'i' from Hill's code
'''
from scipy.io import savemat
from scipy.io import loadmat
# start matlab
mlab = Matlab(maxtime=maxtime)
mlab.start()
# .mat shuttle files
# add path check
inPath = os.path.join('..', 'cache', 'dbn_wrapper_in.mat')
outPath = os.path.join('..', 'cache', 'dbn_wrapper_out.mat')
D = np.transpose(panel.values)
num_rows = np.shape(D)[0]
num_cols = np.shape(D)[1]
D = np.reshape(D, (num_rows, num_cols, 1))
#D = np.transpose(panel, (2,1,0))
# save the matlab object that the DBN wrapper will load
# contains all the required parameters for the DBN code
savemat(inPath, {"D" : D,
"max_indegree" : max_indegree,
"prior_graph" : prior_graph,
"lambdas" : lambdas,
"reg_mode" : reg_mode,
"stdise" : stdise,
"silent" : silent})
# DBN wrapper just needs an input and output path
args = {"inPath" : inPath, "outPath" : outPath}
# call DBN code
res = mlab.run_func('dbn_wrapper.m', args, maxtime=maxtime)
mlab.stop()
out = loadmat(outPath)
edge_prob = pd.DataFrame(out['e'], index=panel.columns, columns=panel.columns)
edge_sign = pd.DataFrame(out['i'], index=panel.columns, columns=panel.columns)
#edge_prob = out['e']
#edge_sign = out['i']
return (edge_prob, edge_sign)
示例3: fix_model
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
def fix_model(self, W, intMat, drugMat, targetMat, seed=None):
R = W*intMat
drugMat = (drugMat+drugMat.T)/2
targetMat = (targetMat+targetMat.T)/2
mlab = Matlab()
mlab.start()
# print os.getcwd()
# self.predictR = mlab.run_func(os.sep.join([os.getcwd(), "kbmf2k", "kbmf.m"]), {'Kx': drugMat, 'Kz': targetMat, 'Y': R, 'R': self.num_factors})['result']
self.predictR = mlab.run_func(os.path.realpath(os.sep.join(['../kbmf2k', "kbmf.m"])), {'Kx': drugMat, 'Kz': targetMat, 'Y': R, 'R': self.num_factors})['result']
# print os.path.realpath(os.sep.join(['../kbmf2k', "kbmf.m"]))
mlab.stop()
示例4: plot_deltahist
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
def plot_deltahist(fileName1, fileName2):
prog = find_executable('matlab')
if not prog:
sys.exit("Could not find MATLAB on the PATH. Exiting...")
else:
print("Found MATLAB in "+prog)
mlab = Matlab(executable=prog)
mlab.start()
results = mlab.run_func('./plot_deltahist.m', {'arg1': fileName1, 'arg2': fileName2})
mlab.stop()
示例5: objective_function
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
def objective_function(self, x):
'''
matlabpath: we need the path to matlab since we need to run it.
IMPORTANT: walker_simulation.m must be included in the
WGCCM_three_link_walker_example file in order to work.
So simply modify the path below.
'''
mlab = Matlab(executable= matlabpath)
mlab.start()
output = mlab.run_func(os.path.join(self.matlab_code_directory, 'walker_simulation.m'),
{'arg1': x[:, 0],'arg2': x[:, 1],'arg3': x[:, 2],
'arg4': x[:, 3],'arg5':x[:, 4],'arg6': x[:, 5],
'arg7': x[:, 6],'arg8': x[:, 7],'arg9': self.num_steps})
answer = output['result']
simul_output = answer['speed']
mlab.stop()
示例6: Matlab
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
randType = 2
checksignal = 1
##
data = np.loadtxt(filename)
time = data[:, 0]
amp = data[:, 1]
dt = time[1] - time[0]
##
mlab = Matlab()
mlab.start()
mlab.run_code('addpaths')
# Fast EEMD
res = mlab.run_func('feemd_post_pro', amp, Nstd, NE, numImf, runCEEMD, maxSift,
typeSpline, toModifyBC, randType, seedNo, checksignal)
imfs = res['result']
# Orthogonality Checking
oi = mlab.run_func('ratio1', imfs)
oi_pair = mlab.run_func('ratioa', imfs)
print('Non-orthogonal leakage of components:')
print(oi['result'])
print('Non-orthogonal leakage for pair of adjoining components:')
print(oi_pair['result'])
# Hilbert Transform
fa_res = mlab.run_func('fa', imfs[:, 3], dt, 'hilbtm', 'pchip', 0, nargout=2)
fa = fa_res['result']
ifreq = np.transpose(fa[0])
示例7: Matlab
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
# Parameters Setting
filename = "./Input_data/example_lena.png"
npixs = 512
Nstd = 0.4
NE = 20
seedNo = 1
numImf = 6
runCEEMD = 1
maxSift = 10
typeSpline = 2
toModifyBC = 1
randType = 2
checksignal = 1
##
mlab = Matlab()
mlab.start()
mlab.run_code("addpaths")
# Fast 2dEEMD
res = mlab.run_func(
"meemd", filename, npixs, Nstd, NE, numImf, runCEEMD, maxSift, typeSpline, toModifyBC, randType, seedNo, checksignal
)
imfs = res["result"]
# Plot Results
HHTplots.example_lena(filename, imfs)
mlab.stop()
示例8: Matlab
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
import pymatbridge
from pymatbridge import Matlab
# Initialise MATLAB
mlab = Matlab()
# Start the server
mlab.start()
# Run a test function: just adds 1 to the argument a
res = []
for i in range(5):
res.append(mlab.run_func('demo_func.m', {'a': i})['result'])
print res[-1]
# test the JSON parsing.
# quotes, and \n
res.append(mlab.run_code('fprintf(1,char([34,104,105,34,10]));'))
print res[-1]
# \b, \n
res.append(mlab.run_code('fprintf(1,char([8,10]));'))
print res[-1]
# \f, \n
res.append(mlab.run_code('fprintf(1,char([12,10]));'))
print res[-1]
# \r, \n
res.append(mlab.run_code('fprintf(1,char([13,10]));'))
print res[-1]
# \t, \n
res.append(mlab.run_code('fprintf(1,char([9,10]));'))
print res[-1]
# \\, \n
示例9: len
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
mlab.start()
N = len(samples)
involved = [[] for _ in range(N)]
row = 0
for i in range(N):
for j in range(i+1, N):
involved[i].append(row)
involved[j].append(row)
row += 1
rows = set(range(row))
notinvolved = [list(rows.difference(_)) for _ in involved]
dsts = np.zeros((len(samples), 2))
thetas = np.zeros((len(samples), 31))
i = 0
for train_row, test_row in zip(notinvolved, involved):
res = mlab.run_func('optimize_weights.m', {'A': A[train_row, :].tolist()})
x = np.array(res['result'])
dsts[i, :] = [np.linalg.norm(np.dot(A[test_row, :], x)),
np.linalg.norm(np.dot(A[test_row, :], theta))]
thetas[i, :] = x.ravel()
i += 1
s = clock()
res = mlab.run_func('optimize_weights.m',
{'A': A.tolist(), 'involved': involved,
'notinvolved': notinvolved})
clock() - s
mlab.stop()
dsts = np.array(res['result']['distances'])
thetas = np.array(res['result']['thetas'])
示例10: backtest
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
def backtest(filename, data, schedule_data):
f = open(filename)
f.readline()
player_data = {}
time_data = []
for i in xrange(50):
line = f.readline()
if line is None or len(line) == 0:
break
date = int(line[:3])
print date
jsonvalue = "{"+f.readline()+"}"
value = json.loads(jsonvalue)
time_data.insert(0,(date,value))
for p in value:
if not p in player_data:
player_data[p] = [0]
player_data[p].insert(0,value[p])
time_data2 = convertToPlayersTimeData(time_data, data)
teams = set([i.team for i in data])
for i in xrange(len(time_data2)):
stamp_data = time_data2[i][1]
Tracer()()
portfolio = ["rohit sharma", "ajinkya rahane", "david warner", "glenn maxwell", "robin uthappa", "shane watson", "sandeep sharma", "sunil narine", "pravin tambe", "yuzvendra chahal", "bhuvneshwar kumar"]
# portfolio = ["yuzvendra chahal", "shakib al hasan", "shane watson", "rohit sharma", "sandeep sharma", "sunil narine", "ajinkya rahane", "jacques kallis", "robin uthappa", "jayant yadav","bhuvneshwar kumar"]
# portfolio = ["manish pandey", "rohit sharma","jacques kallis","robin uthappa", "aditya tare", "ambati rayudu", "morne morkel","piyush chawla","sunil narine","lasith malinga","pragyan ojha"]
power_player = "glenn maxwell"
# power_player = "bhuvneshwar kumar"
portfolio_p = set([getPlayer(data, p)[0] for p in portfolio])
power_player_p = getPlayer(data, power_player)[0]
points = 0
subs = 75
mlab = Matlab(matlab='/Applications/MATLAB_R2013a.app/bin/matlab')
mlab.start()
for i in xrange(4,len(time_data2)):
# START = str(time_data2[i][0])
# CURRENT_TEAM = set(portfolio)
# SUBSTITUTIONS = subs
# PAST_STATS = time_data[i][1]
print "\n\n\n\n\n\n"
print (subs, str(time_data2[i][0]))
print set(portfolio_p)
print points
print "\n\n\n\n\n\n"
# print time_data[i-1][1]
# Tracer()()
inp = (subs, str(time_data2[i][0]), set(portfolio), time_data[i-1][1])
backtest_pickteam.pickTeam(data, schedule_data, inp)
res = mlab.run_func('/Users/deedy/Dev/FantasyIPL-Moneyball/python2matlab.m', {}, maxtime = 500)
changes = backtest_results.getResults(data, schedule_data, res['result'])
subs -= changes[2]
portfolio_p = changes[0]
power_player_p = changes[1]
# Tracer()()
# update portfolio
# update subs
# update power player
# Tracer()()
teams = [(p,time_data2[i][1][p] - time_data2[i-1][1][p] ) for p in time_data2[i][1] if p in portfolio_p]
print teams
pthis = 0
for i in teams:
if power_player_p == i[0]:
pthis += 2*i[1]
else:
pthis += i[1]
points+= pthis
print "{0}\t{1}\t{2}\n\n".format(points, pthis, subs)
# print "{0}\t{1}".format(time_data2[i][0] , teams)
mlab.stop()
Tracer()()
f.close()
示例11: custom_filter
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
def custom_filter(source, destination):
mlab = Matlab(matlab='/usr/local/MATLAB/R2013a/bin/matlab')
mlab.start()
res = mlab.run_func('./lineDect.m', {'arg1': source, 'arg2':destination})
示例12: range
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
for i in range(0,len(second_level)):
name = second_level[i].split("Database/",1)[1].rsplit(".",1)[0]
address, name2 = os.path.split(name)
if name2 != ".DS_Store" and name2 != '':
if not os.path.exists('Database_5pt/'+address):
os.makedirs('Database_5pt/'+address)
pt = open("Database_5pt/"+address+'/'+name2+".5pt","w+")
img=io.imread(second_level[i])
dets = detector(img, 1)
for k, d in enumerate(dets):
shape = predictor(img, d)
left_eye = shape.part(45)
right_eye = shape.part(36)
pt.write(str(left_eye.x)+' '+str(left_eye.y)+'\n')
pt.write(str(right_eye.x)+' '+str(right_eye.y)+'\n')
nose = shape.part(30)
pt.write(str(nose.x)+' '+str(nose.y)+'\n')
left_mouse = shape.part(54)
right_mouse = shape.part(48)
pt.write(str(left_mouse.x)+' '+str(left_mouse.y)+'\n')
pt.write(str(right_mouse.x)+' '+str(right_mouse.y)+'\n')
pt.close()
ec_y = shape.part(36).y-shape.part(45).y
ec_y= (ec_y,-ec_y)(ec_y<0)
mc_y = shape.part(54).y-shape.part(48).y
mc_y =(mc_y,-mc.y)[ec_y<0]
ec_mc_y = mc_y-ec_y
pt.close()
#computations
mlab.run_func('src/software/face_db_align.m', {'face_dir': 'Database', 'ffp_dir': 'Database_5pt', 'ec_mc_y': ec_mc_y, 'ec_y': ec_y, 'img_size': size, 'save_dir': 'Database_preprocessed'})
示例13: find_executable
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
times which emulates a counter. Once it is done with
counting it shuts down the matlab server.
'''
from pymatbridge import Matlab
from distutils.spawn import find_executable
mcruns = 800
res = {'result': 0}
# Search for matlab
prog = find_executable('matlab')
if not prog:
sys.exit("Could not find MATLAB on PATH. Exiting...")
else:
print("Found MATLAB in "+prog)
# Create matlab session
mlab = Matlab(executable=prog)
mlab.start()
# Call jk.m in a for loop to emulate a counter
for mcindex in range(mcruns):
res = mlab.run_func('../matlab/adder.m', {'arg1': res['result'], 'arg2': 1})
print(res['result'])
# Shut down the matlab server
mlab.stop()
示例14: execfile
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
from pymatbridge import Matlab
import os
import scipy.io
if __name__ == "__main__":
config = {}
execfile("settings.conf", config)
# python 3: exec(open("example.conf").read(), config)
mlab = Matlab(matlab=config["MATLAB_LOCATION"])
path = os.getcwd() + "/"
mlab.start()
filename = config["f1arg1"]
start = int(config["f1arg2"])
end = int(config["f1arg3"])
res = mlab.run_func(path + config["f1"], {"arg1": filename, "arg2": start, "arg3": end})
mlab.stop()
print("done")
示例15: Matlab
# 需要導入模塊: from pymatbridge import Matlab [as 別名]
# 或者: from pymatbridge.Matlab import run_func [as 別名]
from pymatbridge import Matlab
import os
mlab = Matlab()
mlab.start()
dir_path = os.path.dirname(os.path.realpath(__file__))
dir_list = ['/Input_data', '/HHT_MATLAB_package', '/HHT_MATLAB_package/EMD',
'/HHT_MATLAB_package/checkIMFs', '/HHT_MATLAB_package/HT']
for d in dir_list:
res = mlab.run_func('addpath', dir_path + d)
class EMD():
def __init__(self, signal, Nstd, NE, num_imf=10, run_CEEMD=1, max_sift=10,
type_spline=2, modify_BC=1, rand_type=2, seed_no=1,
check_signal=1):
res = mlab.run_func('feemd_post_pro', signal, Nstd, NE, num_imf,
run_CEEMD, max_sift, type_spline, modify_BC,
rand_type, seed_no, check_signal)
self.imfs = res['result']
def get_oi(self):
oi = mlab.run_func('ratio1', self.imfs)
oi_pair = mlab.run_func('ratioa', self.imfs)
oi_dic = {'Non-orthogonal leakage of components': oi['result'],
'Non-orthogonal leakage for pair of adjoining components': oi_pair['result']}
return oi_dic