本文整理匯總了Python中pylsl.StreamInlet.pull_chunk方法的典型用法代碼示例。如果您正苦於以下問題:Python StreamInlet.pull_chunk方法的具體用法?Python StreamInlet.pull_chunk怎麽用?Python StreamInlet.pull_chunk使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylsl.StreamInlet
的用法示例。
在下文中一共展示了StreamInlet.pull_chunk方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: BetaInlet
# 需要導入模塊: from pylsl import StreamInlet [as 別名]
# 或者: from pylsl.StreamInlet import pull_chunk [as 別名]
class BetaInlet(object):
def __init__(self):
print("looking for an EEG stream...")
streams = resolve_byprop("type", "EEG")
# create a new inlet to read from the stream
proc_flags = proc_clocksync | proc_dejitter | proc_monotonize
self.inlet = StreamInlet(streams[0], processing_flags=proc_flags)
# The following is an example of how to read stream info
stream_info = self.inlet.info()
stream_Fs = stream_info.nominal_srate()
stream_xml = stream_info.desc()
chans_xml = stream_xml.child("channels")
chan_xml_list = []
ch = chans_xml.child("channel")
while ch.name() == "channel":
chan_xml_list.append(ch)
ch = ch.next_sibling("channel")
self.channel_names = [ch_xml.child_value("label") for ch_xml in chan_xml_list]
print("Reading from inlet named {} with channels {} sending data at {} Hz".format(stream_info.name(),
self.channel_names, stream_Fs))
def update(self):
max_samps = 3276*2
data = np.nan * np.ones((max_samps, len(self.channel_names)), dtype=np.float32)
_, timestamps = self.inlet.pull_chunk(max_samples=max_samps, dest_obj=data)
data = data[:len(timestamps), :]
print("Beta inlet retrieved {} samples.".format(len(timestamps)))
return data, np.asarray(timestamps)
示例2: __init__
# 需要導入模塊: from pylsl import StreamInlet [as 別名]
# 或者: from pylsl.StreamInlet import pull_chunk [as 別名]
class LSLInlet:
def __init__(self, name=LSL_STREAM_NAMES[2], max_chunklen=8, n_channels=20):
streams = resolve_byprop('name', name, timeout=LSL_RESOLVE_TIMEOUT)
self.inlet = None
self.dtype = 'float64'
if len(streams) > 0:
self.inlet = StreamInlet(streams[0], max_buflen=1, max_chunklen=max_chunklen)
# self.dtype = fmt2string[self.inlet.info().channel_format()]
print(self.dtype)
self.n_channels = n_channels if n_channels else self.inlet.info().channel_count()
def get_next_chunk(self):
# get next chunk
chunk, timestamp = self.inlet.pull_chunk()
# convert to numpy array
chunk = np.array(chunk, dtype=self.dtype)
# return first n_channels channels or None if empty chunk
return chunk[:, :self.n_channels] if chunk.shape[0] > 0 else None
def update_action(self):
pass
def save_info(self, file):
with open(file, 'w') as f:
f.write(self.inlet.info().as_xml())
def get_frequency(self):
return self.inlet.info().nominal_srate()
def get_n_channels(self):
return self.n_channels
def get_channels_labels_bad(self):
time.sleep(0.001)
labels = []
ch = self.inlet.info().desc().child("channels").child("channel")
for k in range(self.get_n_channels()):
labels.append(ch.child_value("label"))
ch = ch.next_sibling()
return
def get_channels_labels(self):
return ch_names[:self.n_channels]
def disconnect(self):
del self.inlet
self.inlet = None
示例3: MarkerInlet
# 需要導入模塊: from pylsl import StreamInlet [as 別名]
# 或者: from pylsl.StreamInlet import pull_chunk [as 別名]
class MarkerInlet(object):
def __init__(self):
self.task = {'phase':'precue', 'class':1, 'target':1}
print("Looking for stream with type Markers")
streams = resolve_bypred("type='Markers'", minimum=1)
proc_flags = 0 # Marker events are relatively rare. No need to post-process.
self.inlet = StreamInlet(streams[0], processing_flags=proc_flags)
# The following is an example of how to read stream info
stream_info = self.inlet.info()
stream_Fs = stream_info.nominal_srate()
stream_xml = stream_info.desc()
chans_xml = stream_xml.child("channels")
chan_xml_list = []
ch = chans_xml.child("channel")
while ch.name() == "channel":
chan_xml_list.append(ch)
ch = ch.next_sibling("channel")
stream_ch_names = [ch_xml.child_value("label") for ch_xml in chan_xml_list]
print("Reading from inlet named {} with channels {}".format(stream_info.name(), stream_ch_names))
def update(self):
marker_samples, marker_timestamps = self.inlet.pull_chunk(timeout=0.0)
if (marker_timestamps):
[phase_str, class_str, targ_str] = marker_samples[-1][0].split(', ')
if phase_str in ['TargetCue']:
self.task['phase'] = 'cue'
elif phase_str in ['GoCue']:
self.task['phase'] = 'go'
elif phase_str in ['Miss', 'Hit']:
self.task['phase'] = 'evaluate'
elif phase_str[:8] == 'NewTrial':
self.task['phase'] = 'precue'
else:
print(phase_str)
self.task['class'] = int(class_str.split(' ')[1])
self.task['target'] = int(targ_str.split(' ')[1])
print("Marker inlet updated with task {}".format(self.task))
示例4: print
# 需要導入模塊: from pylsl import StreamInlet [as 別名]
# 或者: from pylsl.StreamInlet import pull_chunk [as 別名]
# first resolve an EEG stream on the lab network
print("looking for an EEG stream...")
streams = resolve_stream('type', 'Data')
# create a new inlet to read from the stream
inlet = StreamInlet(streams[0])
globalstart = time.time()
while (time.time() - globalstart < exptime):
startwhile = time.time()
chunk, timestamp = inlet.pull_chunk()
np_ar_chunk = np.asarray(chunk)
chunk_size = np_ar_chunk.shape[0]
if chunk_size > 0:
data_chunk_test = np_ar_chunk.T
received_data_buf[:,pos:(pos+chunk_size)] = data_chunk_test
pos = pos + chunk_size + 1
[data_chunk_test,Zlast_pre_high[0,:,:]] = spsig.lfilter(b_pre_high[0], a_pre_high[0], data_chunk_test, 1, Zlast_pre_high[0,:,:])
[data_chunk_test,Zlast_pre_low[0,:,:]] = spsig.lfilter(b_pre_low[0], a_pre_low[0], data_chunk_test, 1, Zlast_pre_low[0,:,:])
data_chunk_test = data_chunk_test[without_emp_mask,:]
#chan_names_test_used = chan_names_test[:,without_emp_mask]
示例5: len
# 需要導入模塊: from pylsl import StreamInlet [as 別名]
# 或者: from pylsl.StreamInlet import pull_chunk [as 別名]
# Name of our channel for plotting purposes
ch_names = [ch_names[i] for i in index_channel]
n_channels = len(index_channel)
# Get names of features
# ex. ['delta - CH1', 'pwr-theta - CH1', 'pwr-alpha - CH1',...]
feature_names = BCIw.get_feature_names(ch_names)
# Number of seconds to collect training data for (one class)
training_length = 20
""" 3. RECORD TRAINING DATA """
# Record data for mental activity 0
BCIw.beep()
eeg_data0, timestamps0 = inlet.pull_chunk(
timeout=training_length+1, max_samples=fs * training_length)
eeg_data0 = np.array(eeg_data0)[:, index_channel]
print('\nClose your eyes!\n')
# Record data for mental activity 1
BCIw.beep() # Beep sound
eeg_data1, timestamps1 = inlet.pull_chunk(
timeout=training_length+1, max_samples=fs * training_length)
eeg_data1 = np.array(eeg_data1)[:, index_channel]
# Divide data into epochs
eeg_epochs0 = BCIw.epoch(eeg_data0, epoch_length * fs,
overlap_length * fs)
eeg_epochs1 = BCIw.epoch(eeg_data1, epoch_length * fs,
overlap_length * fs)
示例6: print
# 需要導入模塊: from pylsl import StreamInlet [as 別名]
# 或者: from pylsl.StreamInlet import pull_chunk [as 別名]
timeout=100)[0]
print('GUI source discovered')
#print(experiment_info, bci_info)
experiment_inlet = StreamInlet(experiment_info)
bci_inlet = StreamInlet(bci_info)
bci_results = [[], []]
experiment_results = [[], []]
print('Recording')
while True:
# get a new sample (you can also omit the timestamp part if you're not
# interested in it)
bci_values, bci_timestamps = bci_inlet.pull_chunk(max_samples=device.sfreq * 60 *6)
bci_results[0].extend(bci_values)
bci_results[1].extend(bci_timestamps)
experiment_values, experiment_timestamps = experiment_inlet.pull_chunk()
experiment_results[0].extend(experiment_values)
experiment_results[1].extend(experiment_timestamps)
if len(experiment_results[0]) > 0 and experiment_results[0][-1][0] < 0:
break
experiment_results = np.hstack([np.array(experiment_results[1])[:, None],
experiment_results[0]])
np.savetxt(filename+'_experiment'+'.csv', experiment_results, delimiter=';')
bci_results = np.hstack([np.array(bci_results[1])[:, None],
示例7: print
# 需要導入模塊: from pylsl import StreamInlet [as 別名]
# 或者: from pylsl.StreamInlet import pull_chunk [as 別名]
1 / shift_length)
""" 3. GET DATA """
# The try/except structure allows to quit the while loop by aborting the
# script with <Ctrl-C>
print('Press Ctrl-C in the console to break the while loop.')
try:
# The following loop does what we see in the diagram of Exercise 1:
# acquire data, compute features, visualize raw EEG and the features
while True:
""" 3.1 ACQUIRE DATA """
# Obtain EEG data from the LSL stream
eeg_data, timestamp = inlet.pull_chunk(
timeout=1, max_samples=int(shift_length * fs))
# Only keep the channel we're interested in
ch_data = np.array(eeg_data)[:, index_channel]
# Update EEG buffer
eeg_buffer, filter_state = BCIw.update_buffer(
eeg_buffer, ch_data, notch=True,
filter_state=filter_state)
""" 3.2 COMPUTE FEATURES """
# Get newest samples from the buffer
data_epoch = BCIw.get_last_data(eeg_buffer,
epoch_length * fs)
# Compute features