本文整理匯總了Python中pylearn2.sandbox.cuda_convnet.filter_acts.FilterActs類的典型用法代碼示例。如果您正苦於以下問題:Python FilterActs類的具體用法?Python FilterActs怎麽用?Python FilterActs使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了FilterActs類的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: lmul
def lmul(self, x):
"""
dot(x, A)
aka, do convolution with input image x
"""
check_cuda(str(type(self)) + ".lmul")
# TODO Why is it CPU??
print "Por que?!?!", type(x)
cpu = "Cuda" not in str(type(x))
if cpu:
x = gpu_from_host(x)
assert x.ndim == 5
x_axes = self.input_axes
assert len(x_axes) == 5
op_axes = ("c", 0, 1, "t", "b")
if tuple(x_axes) != op_axes:
print "ssssssssssssssss"
x = x.dimshuffle(*[x_axes.index(axis) for axis in op_axes])
_x_4d_shape = (
self.signal_shape[0],
self.signal_shape[1],
self.signal_shape[2],
self.signal_shape[3] * self.signal_shape[4],
)
x = x.reshape(_x_4d_shape)
x = gpu_contiguous(x)
rval = FilterActs(self.pad, self.partial_sum, self.kernel_stride[0])(x, self._filters)
if cpu:
rval = host_from_gpu(rval)
rval = rval.reshape(
(
self.filter_shape[3],
self.filter_shape[4],
rval.shape[1],
rval.shape[2],
self.signal_shape[3],
self.signal_shape[4],
)
)
rval = diagonal_subtensor(rval, 4, 0).sum(axis=0)
# Format the output based on the output space
rval_axes = self.output_axes
assert len(rval_axes) == 5
if tuple(rval_axes) != op_axes:
rval = rval.dimshuffle(*[op_axes.index(axis) for axis in rval_axes])
return rval
示例2: make_funcs
def make_funcs(batch_size, rows, cols, channels, filter_rows, num_filters):
rng = np.random.RandomState([2012, 10, 9])
filter_cols = filter_rows
base_image_value = rng.uniform(-1.0, 1.0, (channels, rows, cols, batch_size)).astype("float32")
base_filters_value = rng.uniform(-1.0, 1.0, (channels, filter_rows, filter_cols, num_filters)).astype("float32")
images = shared(base_image_value)
filters = shared(base_filters_value, name="filters")
# bench.py should always be run in gpu mode so we should not need a gpu_from_host here
output = FilterActs()(images, filters)
output_shared = shared(output.eval())
cuda_convnet = function([], updates={output_shared: output})
cuda_convnet.name = "cuda_convnet"
images_bc01v = base_image_value.transpose(3, 0, 1, 2)
filters_bc01v = base_filters_value.transpose(3, 0, 1, 2)
filters_bc01v = filters_bc01v[:, :, ::-1, ::-1]
images_bc01 = shared(images_bc01v)
filters_bc01 = shared(filters_bc01v)
output_conv2d = conv2d(
images_bc01, filters_bc01, border_mode="valid", image_shape=images_bc01v.shape, filter_shape=filters_bc01v.shape
)
output_conv2d_shared = shared(output_conv2d.eval())
baseline = function([], updates={output_conv2d_shared: output_conv2d})
baseline.name = "baseline"
return cuda_convnet, baseline
示例3: test_match_valid_conv_strided
def test_match_valid_conv_strided():
# Tests that running FilterActs with stride is the same as running
# theano's conv2D in valid mode and then downsampling
rng = np.random.RandomState([2012,10,9])
batch_size = 5
rows = 9
cols = 9
channels = 3
filter_rows = 3
filter_cols = filter_rows
stride = 3
num_filters = 16
images = shared(rng.uniform(-1., 1., (channels, rows, cols,
batch_size)).astype('float32'), name='images')
filters = shared(rng.uniform(-1., 1., (channels, filter_rows,
filter_cols, num_filters)).astype('float32'), name='filters')
gpu_images = gpu_from_host(images)
gpu_filters = gpu_from_host(filters)
output = FilterActs(stride=stride)(gpu_images, gpu_filters)
output = host_from_gpu(output)
images_bc01 = images.dimshuffle(3,0,1,2)
filters_bc01 = filters.dimshuffle(3,0,1,2)
filters_bc01 = filters_bc01[:,:,::-1,::-1]
output_conv2d = conv2d(images_bc01, filters_bc01,
border_mode='valid', subsample=(stride, stride))
output_conv2d_orig = output_conv2d.dimshuffle(1,2,3,0)
output_conv2d = output_conv2d_orig # [:, ::stride, ::stride, :]
f = function([], [output, output_conv2d, output_conv2d_orig])
output, output_conv2d, output_conv2d_orig = f()
warnings.warn("""test_match_valid_conv success criterion is not very strict. Can we verify that this is OK?
One possibility is that theano is numerically unstable and Alex's code is better.
Probably theano CPU 64 bit is OK but it's worth checking the others.""")
if np.abs(output - output_conv2d).max() > 2.4e-6:
assert type(output) == type(output_conv2d)
assert output.dtype == output_conv2d.dtype
if output.shape != output_conv2d.shape:
print 'cuda-convnet shape: ',output.shape
print 'theano shape: ',output_conv2d.shape
assert False
err = np.abs(output - output_conv2d)
print 'absolute error range: ', (err.min(), err.max())
print 'mean absolute error: ', err.mean()
print 'cuda-convnet value range: ', (output.min(), output.max())
print 'theano value range: ', (output_conv2d.min(), output_conv2d.max())
assert False
示例4: test_grad
def test_grad():
rng = np.random.RandomState([2012, 10, 9])
batch_size = 5
rows = 10
cols = 9
channels = 3
filter_rows = 4
filter_cols = filter_rows
num_filters = 16
images = shared(rng.uniform(-1.0, 1.0, (channels, rows, cols, batch_size)).astype("float32"), name="images")
filters = shared(
rng.uniform(-1.0, 1.0, (channels, filter_rows, filter_cols, num_filters)).astype("float32"), name="filters"
)
gpu_images = gpu_from_host(images)
gpu_filters = gpu_from_host(filters)
output = FilterActs()(gpu_images, gpu_filters)
output = host_from_gpu(output)
# XXX: use verify_grad
output_grad = grad(output.sum(), images)
images_bc01 = images.dimshuffle(3, 0, 1, 2)
filters_bc01 = filters.dimshuffle(3, 0, 1, 2)
filters_bc01 = filters_bc01[:, :, ::-1, ::-1]
output_conv2d = conv2d(images_bc01, filters_bc01, border_mode="valid")
output_conv2d = output_conv2d.dimshuffle(1, 2, 3, 0)
# XXX: use verify_grad
output_conv2d_grad = grad(output_conv2d.sum(), images)
f = function([], [output_grad, output_conv2d_grad])
output_grad, output_conv2d_grad = f()
warnings.warn(
"""test_match_valid_conv success criterion is not very strict. Can we verify that this is OK?
One possibility is that theano is numerically unstable and Alex's code is better.
Probably theano CPU 64 bit is OK but it's worth checking the others."""
)
if np.abs(output_grad - output_conv2d_grad).max() > 7.7e-6:
assert type(output_grad) == type(output_conv2d_grad)
assert output_grad.dtype == output_conv2d_grad.dtype
if output_grad.shape != output_conv2d_grad.shape:
print "cuda-convnet shape: ", output_grad.shape
print "theano shape: ", output_conv2d_grad.shape
assert False
err = np.abs(output_grad - output_conv2d_grad)
print "absolute error range: ", (err.min(), err.max())
print "mean absolute error: ", err.mean()
print "cuda-convnet value range: ", (output_grad.min(), output_grad.max())
print "theano value range: ", (output_conv2d_grad.min(), output_conv2d_grad.max())
assert False
示例5: test_match_valid_conv
def test_match_valid_conv():
# Tests that running FilterActs with no padding is the same as running
# theano's conv2D in valid mode
rng = np.random.RandomState([2012,10,9])
batch_size = 5
rows = 10
cols = 9
channels = 3
filter_rows = 4
filter_cols = filter_rows
num_filters = 16
images = shared(rng.uniform(-1., 1., (channels, rows, cols,
batch_size)).astype('float32'), name='images')
filters = shared(rng.uniform(-1., 1., (channels, filter_rows,
filter_cols, num_filters)).astype('float32'), name='filters')
gpu_images = gpu_from_host(images)
gpu_filters = gpu_from_host(filters)
output = FilterActs()(gpu_images, gpu_filters)
output = host_from_gpu(output)
images_bc01 = images.dimshuffle(3,0,1,2)
filters_bc01 = filters.dimshuffle(3,0,1,2)
filters_bc01 = filters_bc01[:,:,::-1,::-1]
output_conv2d = conv2d(images_bc01, filters_bc01,
border_mode='valid')
output_conv2d = output_conv2d.dimshuffle(1,2,3,0)
try:
f = function([], [output, output_conv2d])
except:
raise KnownFailureTest("cuda-convnet code depends on an unmerged theano feature.")
output, output_conv2d = f()
warnings.warn("test_match_valid_conv success criterion is not very strict. Can we verify that this is OK?")
if np.abs(output - output_conv2d).max() > 2.4e-6:
assert type(output) == type(output_conv2d)
assert output.dtype == output_conv2d.dtype
if output.shape != output_conv2d.shape:
print 'cuda-convnet shape: ',output.shape
print 'theano shape: ',output_conv2d.shape
assert False
err = np.abs(output - output_conv2d)
print 'absolute error range: ', (err.min(), err.max())
print 'mean absolute error: ', err.mean()
print 'cuda-convnet value range: ', (output.min(), output.max())
print 'theano value range: ', (output_conv2d.min(), output_conv2d.max())
assert False
示例6: lmul
def lmul(self, x):
"""
.. todo::
WRITEME properly
dot(x, A)
aka, do convolution with input image x
"""
check_cuda(str(type(self)) + ".lmul")
cpu = 'Cuda' not in str(type(x))
if cpu:
x = gpu_from_host(x)
# x must be formatted as channel, topo dim 0, topo dim 1, batch_index
# for use with FilterActs
assert x.ndim == 4
x_axes = self.input_axes
assert len(x_axes) == 4
op_axes = ('c', 0, 1, 'b')
if tuple(x_axes) != op_axes:
x = x.dimshuffle(*[x_axes.index(axis) for axis in op_axes])
x = gpu_contiguous(x)
# Patch old pickle files.
if not hasattr(self, 'kernel_stride'):
self.kernel_stride = (1, 1)
rval = FilterActs(self.pad, self.partial_sum, self.kernel_stride[0])(
x,
self._filters
)
# Format the output based on the output space
rval_axes = self.output_axes
assert len(rval_axes) == 4
if cpu:
rval = host_from_gpu(rval)
if tuple(rval_axes) != op_axes:
rval = rval.dimshuffle(*[op_axes.index(axis)
for axis in rval_axes])
return rval
示例7: lmul
def lmul(self, x):
"""
dot(x, A)
aka, do convolution with input image x
"""
cpu = 'Cuda' not in str(type(x))
if cpu:
x = gpu_from_host(x)
# x must be formatted as channel, topo dim 0, topo dim 1, batch_index
# for use with FilterActs
assert x.ndim == 4
x_axes = self.input_axes
assert len(x_axes) == 4
op_axes = ('c', 0, 1, 'b')
if tuple(x_axes) != op_axes:
x = x.dimshuffle(*[x_axes.index(axis) for axis in op_axes])
x = gpu_contiguous(x)
rval = FilterActs(self.pad, self.partial_sum)(x, self._filters)
# Format the output based on the output space
rval_axes = self.output_axes
assert len(rval_axes) == 4
if tuple(rval_axes) != op_axes:
rval = rval.dimshuffle(*[op_axes.index(axis) for axis in rval_axes])
if cpu:
rval = host_from_gpu(rval)
return rval
示例8: test_match_grad_valid_conv
def test_match_grad_valid_conv():
# Tests that weightActs is the gradient of FilterActs
# with respect to the weights.
for partial_sum in [0, 1, 4]:
rng = np.random.RandomState([2012, 10, 9])
batch_size = 3
rows = 7
cols = 9
channels = 8
filter_rows = 4
filter_cols = filter_rows
num_filters = 16
images = shared(rng.uniform(-1., 1., (channels, rows, cols,
batch_size)).astype('float32'),
name='images')
filters = rng.uniform(-1., 1.,
(channels, filter_rows,
filter_cols, num_filters)).astype('float32')
filters = shared(filters, name='filters')
gpu_images = gpu_from_host(images)
gpu_filters = gpu_from_host(filters)
output = FilterActs(partial_sum=partial_sum)(gpu_images, gpu_filters)
output = host_from_gpu(output)
images_bc01 = images.dimshuffle(3, 0, 1, 2)
filters_bc01 = filters.dimshuffle(3, 0, 1, 2)
filters_bc01 = filters_bc01[:, :, ::-1, ::-1]
output_conv2d = conv2d(images_bc01, filters_bc01,
border_mode='valid')
output_conv2d = output_conv2d.dimshuffle(1, 2, 3, 0)
theano_rng = MRG_RandomStreams(2013 + 1 + 31)
coeffs = theano_rng.normal(avg=0., std=1.,
size=output_conv2d.shape, dtype='float32')
cost_conv2d = (coeffs * output_conv2d).sum()
weights_grad_conv2d = T.grad(cost_conv2d, filters)
cost = (coeffs * output).sum()
hid_acts_grad = T.grad(cost, output)
weights_grad = WeightActs(partial_sum=partial_sum)(
gpu_images,
gpu_from_host(hid_acts_grad),
as_tensor_variable((4, 4))
)[0]
weights_grad = host_from_gpu(weights_grad)
f = function([], [output, output_conv2d, weights_grad,
weights_grad_conv2d])
output, output_conv2d, weights_grad, weights_grad_conv2d = f()
if np.abs(output - output_conv2d).max() > 8e-6:
assert type(output) == type(output_conv2d)
assert output.dtype == output_conv2d.dtype
if output.shape != output_conv2d.shape:
print('cuda-convnet shape: ', output.shape)
print('theano shape: ', output_conv2d.shape)
assert False
err = np.abs(output - output_conv2d)
print('absolute error range: ', (err.min(), err.max()))
print('mean absolute error: ', err.mean())
print('cuda-convnet value range: ', (output.min(), output.max()))
print('theano value range: ', (output_conv2d.min(),
output_conv2d.max()))
assert False
warnings.warn(
"test_match_grad_valid_conv success criterion is not very strict."
" Can we verify that this is OK? One possibility is that theano"
" is numerically unstable and Alex's code is better. Probably"
" theano CPU 64 bit is OK but it's worth checking the others.")
if np.abs(weights_grad - weights_grad_conv2d).max() > 8.6e-6:
if type(weights_grad) != type(weights_grad_conv2d):
raise AssertionError("weights_grad is of type " +
str(weights_grad))
assert weights_grad.dtype == weights_grad_conv2d.dtype
if weights_grad.shape != weights_grad_conv2d.shape:
print('cuda-convnet shape: ', weights_grad.shape)
print('theano shape: ', weights_grad_conv2d.shape)
assert False
err = np.abs(weights_grad - weights_grad_conv2d)
print('absolute error range: ', (err.min(), err.max()))
print('mean absolute error: ', err.mean())
print('cuda-convnet value range: ', (weights_grad.min(),
weights_grad.max()))
print('theano value range: ', (weights_grad_conv2d.min(),
weights_grad_conv2d.max()))
#.........這裏部分代碼省略.........
示例9: test_match_valid_conv_padded
def test_match_valid_conv_padded():
# Tests that running FilterActs with no padding is the same as running
# theano's conv2D in valid mode
rng = np.random.RandomState([2012,10,9])
batch_size = 5
rows = 10
cols = 9
channels = 3
filter_rows = 4
filter_cols = filter_rows
num_filters = 16
images = shared(rng.uniform(-1., 1., (channels, rows, cols,
batch_size)).astype('float32'), name='images')
filters = shared(rng.uniform(-1., 1., (channels, filter_rows,
filter_cols, num_filters)).astype('float32'), name='filters')
gpu_images = gpu_from_host(images)
gpu_filters = gpu_from_host(filters)
PAD = 3
output = FilterActs(PAD)(gpu_images, gpu_filters)
output = host_from_gpu(output)
images_bc01 = T.alloc(0., batch_size, channels, rows + PAD * 2, cols + PAD * 2)
images_bc01 = T.set_subtensor(images_bc01[:,:,PAD:-PAD,PAD:-PAD], images.dimshuffle(3,0,1,2))
filters_bc01 = filters.dimshuffle(3,0,1,2)
filters_bc01 = filters_bc01[:,:,::-1,::-1]
output_conv2d = conv2d(images_bc01, filters_bc01,
border_mode='valid')
output_conv2d = output_conv2d.dimshuffle(1,2,3,0)
f = function([], [output, output_conv2d])
output, output_conv2d = f()
warnings.warn("""test_match_valid_conv success criterion is not very strict. Can we verify that this is OK?
One possibility is that theano is numerically unstable and Alex's code is better.
Probably theano CPU 64 bit is OK but it's worth checking the others.""")
assert output.shape == output_conv2d.shape
if np.abs(output - output_conv2d).max() > 2.4e-6:
assert type(output) == type(output_conv2d)
assert output.dtype == output_conv2d.dtype
if output.shape != output_conv2d.shape:
print('cuda-convnet shape: ',output.shape)
print('theano shape: ',output_conv2d.shape)
assert False
err = np.abs(output - output_conv2d)
print('absolute error range: ', (err.min(), err.max()))
print('mean absolute error: ', err.mean())
print('cuda-convnet value range: ', (output.min(), output.max()))
print('theano value range: ', (output_conv2d.min(), output_conv2d.max()))
assert False