當前位置: 首頁>>代碼示例>>Python>>正文


Python PatchViewer.add_patch方法代碼示例

本文整理匯總了Python中pylearn2.gui.patch_viewer.PatchViewer.add_patch方法的典型用法代碼示例。如果您正苦於以下問題:Python PatchViewer.add_patch方法的具體用法?Python PatchViewer.add_patch怎麽用?Python PatchViewer.add_patch使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pylearn2.gui.patch_viewer.PatchViewer的用法示例。


在下文中一共展示了PatchViewer.add_patch方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: show_samples

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
def show_samples(generator,Noise_Dim,data_obj,filename):
    if data_obj.pitch_scale:
        pitch_max = 1.0
    else:
        pitch_max = 108.0
    rows = 4
    sample_cols = 5
    input_noise = np.random.uniform(-1.0,1.0,(rows*sample_cols, Noise_Dim))
    samples = generator.predict(input_noise)
    topo_samples = samples.reshape(samples.shape[0],4,samples.shape[-1]/4)
    #get topological_view

    pv = PatchViewer(grid_shape=(rows,sample_cols + 1),patch_shape=(4,samples.shape[-1]/4), \
                     is_color=False)
    X = np.concatenate((data_obj.X_train,data_obj.X_val,data_obj.X_test),axis = 0)
    topo_X = X
    print('Shape of dataset is {}').format(X.shape)
    X = X.reshape(X.shape[0],X.shape[1]*X.shape[2])

    for i in xrange(topo_samples.shape[0]):
        topo_sample = patch_quantize_01(patch_thresholding(topo_samples[i,:]/pitch_max))
        pv.add_patch(topo_sample * 2. -1.,rescale=False)
        if(i + 1) % sample_cols ==0:
            sample = samples[i,:]
            dists = np.square(X - sample).sum(axis = 1)
            j = np.argmin(dists)
            match = patch_quantize_01(patch_thresholding(topo_X[j,:]/pitch_max))
            pv.add_patch(match*2-1,rescale=False,activation = 1)
    print "Saving %s ..."%filename
    pv.save(filename)
開發者ID:lucaskingjade,項目名稱:GAN_Music,代碼行數:32,代碼來源:visualize_music.py

示例2: GenerateAndSave

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
class GenerateAndSave(TrainExtension):
    """
    Keeps track of what the generator in a (vanilla) GAN returns for a
    particular set of noise values.
    """

    def __init__(self, generator, save_prefix, batch_size=20, grid_shape=(5, 4)):
        assert isinstance(generator, Generator)

        self.batch_sym = T.matrix('generate_batch')
        self.generate_f = theano.function([self.batch_sym],
                                          generator.dropout_fprop(self.batch_sym)[0])

        self.batch = generator.get_noise(batch_size).eval()
        self.save_prefix = save_prefix
        self.patch_viewer = PatchViewer(grid_shape=grid_shape, patch_shape=(32, 32),
                                        is_color=True)

    def on_monitor(self, model, dataset, algorithm):
        samples = self.generate_f(self.batch).swapaxes(0, 3)

        self.patch_viewer.clear()
        for sample in samples:
            self.patch_viewer.add_patch(sample, rescale=True)

        fname = self.save_prefix + '.%05i.png' % model.monitor.get_epochs_seen()
        self.patch_viewer.save(fname)
開發者ID:HyoungWooPark,項目名稱:adversarial,代碼行數:29,代碼來源:train_extensions.py

示例3: create_connect_viewer

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
def create_connect_viewer(N, N1, imgs, count, W2):
    """
    Create the patch to show connections between layers.

    Parameters
    ----------
    N: int
        Number of rows.
    N1: int
        Number of elements in the first layer.
    imgs: ndarray
        Images of weights from the first layer.
    count: int
        Number of elements to show.
    W2: list
        Second hidden layer.
    """
    pv = PatchViewer((N, count), imgs.shape[1:3], is_color=imgs.shape[3] == 3)

    for i in xrange(N):
        w = W2[:, i]

        wneg = w[w < 0.]
        wpos = w[w > 0.]

        w /= np.abs(w).max()

        wa = np.abs(w)

        to_sort = zip(wa, range(N1), w)

        s = sorted(to_sort)

        for j in xrange(count):

            idx = s[N1-j-1][1]
            mag = s[N1-j-1][2]

            if mag > 0:
                act = (mag, 0)
            else:
                act = (0, -mag)

            pv.add_patch(imgs[idx, ...], rescale=True, activation=act)

    return pv
開發者ID:123fengye741,項目名稱:pylearn2,代碼行數:48,代碼來源:top_filters.py

示例4: create_patch_viewer

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
def create_patch_viewer(grid_shape, vis_chains, m):
    """
    Add the patches to show.

    Parameters
    ----------
    grid_shape: tuple
        The shape of the grid to show.
    vis_chains: numpy array
        Visibles chains.
    m: int
        Number of visible chains.
    """
    pv = PatchViewer(grid_shape, vis_chains.shape[1:3],
                     is_color=vis_chains.shape[-1] == 3)

    for i in xrange(m):
        pv.add_patch(vis_chains[i, :], rescale=False)

    return pv
開發者ID:123fengye741,項目名稱:pylearn2,代碼行數:22,代碼來源:show_negative_chains.py

示例5: on_monitor

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
    def on_monitor(self, *args, **kwargs):

        if not hasattr(self, 'record'):
            self.record = {}
            self.size = {}
            for dataset in self.datasets:
                assert tuple(dataset.view_converter.axes) == ('c', 0, 1, 'b')
                self.record[dataset] = dataset.get_topological_view().copy()
                self.size[dataset] = dataset.X.shape[0]
        else:
            for i, dataset in enumerate(self.datasets):
                size = self.size[dataset]
                assert dataset.X.shape[0] == size
                self.record[dataset] = np.concatenate((self.record[dataset], dataset.get_topological_view().copy()),
                        axis=-1)
                record_view = self.record[dataset].copy()
                record_view /= np.abs(record_view).max()
                pv = PatchViewer(grid_shape=(record_view.shape[3]/size, size),
                        patch_shape = record_view.shape[1:3], is_color = record_view.shape[0] == 3)
                for j in xrange(record_view.shape[3]):
                    pv.add_patch(np.transpose(record_view[:,:,:,j], (1, 2, 0)), rescale=False)
                print 'Dataset %d: ' % i
                pv.show()
                x = raw_input()
開發者ID:cc13ny,項目名稱:galatea,代碼行數:26,代碼來源:__init__.py

示例6: plot

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
def plot(w):

    nblocks = int(model.n_g / model.sparse_gmask.bw_g)
    filters_per_block = model.sparse_gmask.bw_g * model.sparse_hmask.bw_h

    block_viewer = PatchViewer((model.sparse_gmask.bw_g, model.sparse_hmask.bw_h),
                               (opts.height, opts.width),
                               is_color = opts.color,
                               pad=(2,2))

    chan_viewer = PatchViewer(get_dims(nblocks),
                              (block_viewer.image.shape[0],
                              block_viewer.image.shape[1]),
                              is_color = opts.color,
                              pad=(5,5))

    main_viewer = PatchViewer(get_dims(nplots),
                              (chan_viewer.image.shape[0],
                               chan_viewer.image.shape[1]),
                              is_color = opts.color,
                              pad=(10,10))

    topo_shape = [opts.height, opts.width, opts.chans]
    view_converter = DefaultViewConverter(topo_shape)

    if opts.splitblocks:
        os.makedirs('filters/')

    for chan_i in xrange(nplots):

        viewer_dims = slice(0, None) if opts.color else chan_i

        for bidx in xrange(nblocks):

            for fidx in xrange(filters_per_block):
                fi = bidx * filters_per_block + fidx
                topo_view = view_converter.design_mat_to_topo_view(w[fi:fi+1,:])
                try:
                    block_viewer.add_patch(topo_view[0,:,:,viewer_dims])
                except:
                    import pdb; pdb.set_trace()

            if opts.splitblocks:
                pl.imshow(block_viewer.image, interpolation='nearest')
                pl.axis('off')
                pl.title('Wv - block %i, chan %i' % (bidx, chan_i))
                pl.savefig('filters/filters_chan%i_block%i.png' % (bidx, chan_i))

            chan_viewer.add_patch(block_viewer.image[:,:,viewer_dims] - 0.5)
            block_viewer.clear()

        main_viewer.add_patch(chan_viewer.image[:,:,viewer_dims] - 0.5)
        chan_viewer.clear()

    return copy.copy(main_viewer.image)
開發者ID:gdesjardins,項目名稱:hossrbm_public,代碼行數:57,代碼來源:show_weights_linear.py

示例7: topo_sample_f

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
# Begin modifying axes
base_conditional_data = args.conditional_sampler(generator, n, 1,
                                                 embedding_file=args.embedding_file)
print 'Mean for each axis:'
pprint.pprint(zip(args.axes, base_conditional_data[:, args.axes].mean(axis=1)))
base_conditional_data[:, args.axes] -= 0.5 * shift

mod_conditional_data = base_conditional_data.copy()

# Build up a flat array of modified conditional data
mod_conditional_steps = []
for axis in args.axes:
    mod_conditional_data[:, axis] += shift
    mod_conditional_steps.extend(mod_conditional_data.copy())

mod_conditional_steps = np.array(mod_conditional_steps)

samples_orig = topo_sample_f(noise_data, base_conditional_data).swapaxes(0, 3)
samples_mod = topo_sample_f(np.tile(noise_data, (m, 1)), mod_conditional_steps).swapaxes(0, 3)

pv = PatchViewer(grid_shape=(m + 1, n), patch_shape=(32,32),
                 is_color=True)

for sample_orig in samples_orig:
    pv.add_patch(sample_orig, activation=1)

for sample_mod in samples_mod:
    pv.add_patch(sample_mod)

pv.show()
開發者ID:HyoungWooPark,項目名稱:adversarial,代碼行數:32,代碼來源:axis_incremental.py

示例8: function

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
rows = 10
cols = 5

X = dataset.get_batch_design(rows * cols )

noise = model.dnce.noise_conditional

assert noise.is_symmetric()

Y = function([],noise.random_design_matrix(sharedX(X)))()

prob = function([],T.nnet.sigmoid(model.free_energy(sharedX(Y))-model.free_energy(sharedX(X))))()
assert prob.ndim == 1

Xt = dataset.get_topological_view(X)
Yt = dataset.get_topological_view(Y)
Xt = dataset.adjust_for_viewer(Xt)
Yt = dataset.adjust_for_viewer(Yt)

pv = PatchViewer( (rows, cols * 2), Xt.shape[1:3], is_color = Xt.shape[-1] == 3)

for i in xrange(Xt.shape[0]):
    assert prob[i] >= 0.0
    assert prob[i] <= 1.0
    assert not np.isnan(prob[i])
    assert not np.isinf(prob[i])
    pv.add_patch(Xt[i,:,:,:], activation = prob[i])
    pv.add_patch(Yt[i,:,:,:], activation = 1. - prob[i])

pv.show()
開發者ID:cc13ny,項目名稱:galatea,代碼行數:32,代碼來源:show_class.py

示例9: FoveatedNORB

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
dataset = FoveatedNORB(which_set=which_set, center=True)

topo = dataset.get_topological_view()

b, r, c, ch = topo.shape

assert ch == 2

pv = PatchViewer((1, 2), (r, c), is_color=False)

i = 0
while True:
    patch = topo[i, :, :, :]
    patch = patch / np.abs(patch).max()

    pv.add_patch(patch[:,:,1], rescale=False)
    pv.add_patch(patch[:,:,0], rescale=False)

    pv.show()

    print(dataset.y[i])

    choices = {'g': 'goto image', 'q': 'quit'}

    if i + 1 < b:
        choices['n'] = 'next image'

    choice = get_choice(choices)

    if choice == 'q':
        quit()
開發者ID:julius506,項目名稱:pylearn2,代碼行數:33,代碼來源:step_through_norb_foveated.py

示例10: make_viewer

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
            chan_viewer.add_patch(block_viewer.image[:,:,viewer_dims] - 0.5)
            block_viewer.clear()

        main_viewer.add_patch(chan_viewer.image[:,:,viewer_dims] - 0.5)
        chan_viewer.clear()

    return copy.copy(main_viewer.image)


viewer_g = make_viewer(wvg, get_dims(model.n_g), (opts.height, opts.width), is_color=True)
viewer_h = make_viewer(wvh, get_dims(model.n_h), (opts.height, opts.width), is_color=True)
w_image = plot(wv)

viewer = PatchViewer((1, 3),
            (numpy.max((viewer_g.image.shape[0], viewer_h.image.shape[0], w_image.shape[0])), 
             numpy.max((viewer_g.image.shape[1], viewer_h.image.shape[1], w_image.shape[1]))),
            is_color = opts.color,
            pad=(0,10))

viewer_dims = slice(0, None) if opts.color else 0
viewer.add_patch(viewer_g.image[:,:, viewer_dims] - 0.5)
viewer.add_patch(viewer_h.image[:,:, viewer_dims] - 0.5)
viewer.add_patch(w_image[:,:, viewer_dims] - 0.5)

pl.axis('off')
pl.imshow(viewer.image, interpolation='nearest')
pl.savefig('filters_%s.png' % opts.path)
if not opts.noshow:
    pl.show()
開發者ID:gdesjardins,項目名稱:hossrbm_public,代碼行數:31,代碼來源:show_weights_linear.py

示例11: DefaultViewConverter

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
topo_shape = [opts.height, opts.width, opts.chans]
viewconv = DefaultViewConverter(topo_shape)
viewdims = slice(0, None) if opts.color else 0

# load model and retrieve parameters
model = serial.load(opts.path)
wv = model.Wv.get_value().T
if opts.mu:
    wv = wv * model.mu.get_value()[:, None]

wv_viewer = PatchViewer(get_dims(len(wv)), (opts.height, opts.width),
                        is_color = opts.color, pad=(2,2))
for i in xrange(len(wv)):
    topo_wvi = viewconv.design_mat_to_topo_view(wv[i:i+1])
    wv_viewer.add_patch(topo_wvi[0])
if opts.wv_only:
    wv_viewer.show()
    os.sys.exit()

wg = model.Wg.get_value()
wh = model.Wh.get_value()
wg_viewer2 = PatchViewer((opts.top, opts.top), (opts.height, opts.width),
                         is_color = opts.color, pad=(2,2))
wg_viewer1 = PatchViewer(get_dims(len(wg)/opts.top),
                         (wg_viewer2.image.shape[0], wg_viewer2.image.shape[1]),
                         is_color = opts.color, pad=(2,2))
for i in xrange(0, len(wg), opts.top):
    for j in xrange(i, i + opts.top):
        idx = numpy.argsort(wg[j])[-opts.top:][::-1]
        for idx_j in idx:
開發者ID:gdesjardins,項目名稱:hossrbm,代碼行數:32,代碼來源:show_factored_weights.py

示例12: PatchViewer

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
    rows = m

    cols = 1+len(Y_sequence)


    pv = PatchViewer((rows, cols), (Xt.shape[1], Xt.shape[2]), is_color = True,
            pad = (8,8) )

    for i in xrange(m):

        #add original patch
        patch = Xt[i,:,:,:].copy()
        patch = dataset.adjust_for_viewer(patch)
        if patch.shape[-1] != 3:
            patch = np.concatenate( (patch,patch,patch), axis=2)
        pv.add_patch(patch, rescale = False, activation = (1,0,0))
        orig_patch = patch

        def label_to_vis(Y_elem):
            prod =  np.dot(Y_elem, templates)
            assert Y_elem.ndim == 1
            rval = np.zeros((1, prod.shape[0]))
            rval[0,:] = prod
            return rval

        # Add the inpainted sequence
        for Y_hat in Y_sequence:
            cur_Y_hat = Y_hat[i,:]
            Y_vis = label_to_vis(cur_Y_hat)
            Y_vis = dataset.adjust_for_viewer(dataset.get_topological_view(Y_vis))
            if Y_vis.ndim == 4:
開發者ID:cc13ny,項目名稱:galatea,代碼行數:33,代碼來源:animate_classification.py

示例13: CIFAR10

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
from pylearn2.datasets.cifar10 import CIFAR10
from pylearn2.gui.patch_viewer import PatchViewer

dataset = CIFAR10(which_set = 'test')

pv = PatchViewer((10,1),(32,32),is_color=True)

T,y = dataset.get_batch_topo(10, include_labels = True)

for i in xrange(10):
    print dataset.label_names[y[i]]
    pv.add_patch(dataset.adjust_for_viewer(T[i,:,:,:]),rescale=False)

pv.show()
開發者ID:cc13ny,項目名稱:galatea,代碼行數:16,代碼來源:test_cifar10.py

示例14: PatchViewer

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
                                                       args.conditional_sampler,
                                                       embedding_file=(args.embedding_file if args.embedding_file is not None
                                                                       else sampler.DEFAULT_EMBEDDING_FILE))

pv = PatchViewer(grid_shape=(m, (n + 1 if args.show_nearest_training else n)),
                 patch_shape=(32,32), is_color=True)

# Optionally load dataset for --show-nearest-training
dataset = None
if args.show_nearest_training:
    model = serial.load(args.model_path)

    # Shape: b * (0 * 1 * c)
    # (topo view)
    dataset = yaml_parse.load(model.dataset_yaml_src)

for i in xrange(topo_samples.shape[0]):
    topo_sample = topo_samples[i, :, :, :]
    pv.add_patch(topo_sample)

    if (args.show_nearest_training and dataset is not None
        and (i + 1) % n == 0):
        sample_topo = topo_samples[i].reshape(-1)
        dists = np.square(dataset.X - sample_topo).sum(axis=1)
        min_j = np.argmin(dists)

        match = dataset.X[min_j].reshape(32, 32, 3)
        pv.add_patch(match, activation=1)

pv.show()
開發者ID:HyoungWooPark,項目名稱:adversarial,代碼行數:32,代碼來源:show_samples_lfw_conditional.py

示例15: xrange

# 需要導入模塊: from pylearn2.gui.patch_viewer import PatchViewer [as 別名]
# 或者: from pylearn2.gui.patch_viewer.PatchViewer import add_patch [as 別名]
        else: 
            new_w = w_di
    else:
        new_w = numpy.zeros((len(w_di), opts.height * opts.width)) if di else w_di

    for fi in xrange(len(w_di)):

        if opts.k != -1:
            # build "new_w" as a linear combination of "strongest" filters in layer below
            if di > 0:
                temp.fill(0.)
                idx = numpy.argsort(w_di[fi])[-opts.k:]
                for fi_m1 in idx:
                    new_w[fi:fi+1] += w_di[fi, fi_m1] * prev_w[fi_m1:fi_m1+1,:]
                #for fi_m1 in xrange(len(w_di[fi])):
            else:
                temp = w_di[fi:fi+1,:]

        topo_view = view_converter.design_mat_to_topo_view(new_w[fi:fi+1])
        block_viewer.add_patch(topo_view[0])

    main_viewer.add_patch(block_viewer.image[:,:,0] - 0.5)
    block_viewer.clear()
    
    prev_w = new_w

pl.imshow(main_viewer.image, interpolation=None)
pl.axis('off');
pl.savefig('weights.png')
pl.show()
開發者ID:gdesjardins,項目名稱:DBM,代碼行數:32,代碼來源:show_weights.py


注:本文中的pylearn2.gui.patch_viewer.PatchViewer.add_patch方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。