本文整理匯總了Python中pylabcontrol.core.Script.load_data方法的典型用法代碼示例。如果您正苦於以下問題:Python Script.load_data方法的具體用法?Python Script.load_data怎麽用?Python Script.load_data使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylabcontrol.core.Script
的用法示例。
在下文中一共展示了Script.load_data方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: visualize_magnetic_fields
# 需要導入模塊: from pylabcontrol.core import Script [as 別名]
# 或者: from pylabcontrol.core.Script import load_data [as 別名]
def visualize_magnetic_fields(src_folder, target_folder, manual=True):
filepath = os.path.join(target_folder, os.path.dirname(src_folder).split('./')[1])
# load the fit_data
if manual:
# df = pd.read_csv(os.path.join(target_folder, '{:s}-manual.csv'.format(folder.split('./')[1].replace('/','-'))), index_col = 'id', skipinitialspace=True)
filename = '{:s}\\data-manual.csv'.format(os.path.basename(src_folder))
else:
filename = '{:s}.csv'.format(os.path.basename(src_folder))
# df = pd.read_csv(os.path.join(target_folder, '{:s}.csv'.format(folder.split('./')[1].replace('/','-'))), index_col = 'id', skipinitialspace=True)
df = pd.read_csv(os.path.join(filepath, filename), index_col='id', skipinitialspace=True)
df = df.drop('Unnamed: 0', 1)
# include manual corrections
if manual:
for id, nv_type in enumerate(df['manual_nv_type']):
if not pd.isnull(nv_type):
df.set_value(id, 'NV type', nv_type)
if nv_type == 'split':
df.set_value(id, 'B-field (gauss)', df.get_value(id, 'manual_B_field'))
# load the image data
select_points_data = Script.load_data(get_select_points(src_folder))
image_data = select_points_data['image_data']
# points_data = select_points_data['nv_locations']
extent = select_points_data['extent']
# prepare figure
f = plt.figure(figsize=(15, 8))
gs = gridspec.GridSpec(1, 2, height_ratios=[1, 1])
ax0 = plt.subplot(gs[0])
ax1 = plt.subplot(gs[1])
ax = [ax0, ax1]
# plot the map
ax0.imshow(image_data, extent=extent, interpolation='nearest', cmap='pink')
for nv_type, color in zip(['split', 'bad', 'no_peak', 'single'], ['g', 'k', 'b', 'r']):
subset = df[df['NV type'] == nv_type]
ax0.scatter(subset['xo'], subset['yo'], c=color, label=nv_type)
ax0.legend(bbox_to_anchor=(2.3, 1))
subset = df[df['NV type'] == 'split']
for i, j, n in zip(subset['xo'], subset['yo'], subset.index):
corr = +0.005 # adds a little correction to put annotation in marker's centrum
ax0.annotate(str(n), xy=(i + corr, j + corr), fontsize=8, color='w')
ax0.set_xlabel('x (V)')
ax0.set_ylabel('y (V)')
# plot the fields on a 1D plot
subset = df[df['NV type'] == 'split']
ax1.plot(subset['xo'], subset['B-field (gauss)'] / freq_to_mag * 1e-6, 'o')
ax1.set_title('ESR Splittings')
ax1.set_xlabel('x coordinate (V)')
ax1.set_ylabel('Splitting (MHz)')
ax1.set_xlim([extent[0], extent[1]])
ax2 = ax1.twinx()
mn, mx = ax1.get_ylim()
ax2.set_ylim(mn * freq_to_mag * 1e6, mx * freq_to_mag * 1e6)
ax2.set_ylabel('Magnetic Field Projection (Gauss)')
for i, j, n in zip(subset['xo'], subset['B-field (gauss)'] / freq_to_mag * 1e-6, subset.index):
corr = 0.0005 # adds a little correction to put annotation in marker's centrum
ax1.annotate(str(n), xy=(i + corr, j + corr))
# f.set_tight_layout(True)
# f.savefig(os.path.join(target_folder, '{:s}.jpg'.format(os.path.basename(folder))),
# bbox_inches='tight',
# # transparent=True,
# pad_inches=0)
f.savefig(os.path.join(filepath, '{:s}.jpg'.format(os.path.basename(src_folder))),
bbox_inches='tight',
# transparent=True,
pad_inches=0)
示例2: manual_correction
# 需要導入模塊: from pylabcontrol.core import Script [as 別名]
# 或者: from pylabcontrol.core.Script import load_data [as 別名]
def manual_correction(folder, target_folder, fit_data_set, nv_type_manual, b_field_manual, queue, current_id_queue, lower_peak_widget, upper_peak_widget, lower_fit_widget, upper_fit_widget):
"""
Backend code to display and fit ESRs, then once input has been received from front-end, incorporate the data into the
current data set
Args:
folders: folder containing the data to analyze
target_folder: target for processed data
fit_data_set: starting point data set containing automatically fitted esrs
nv_type_manual: pointer to empty array to populate with nv type manual corrections
b_field_manual: pointer to empty array to populate with b field manual corrections
queue: queue for communication with front-end in separate thread
lower_peak_widget: widget containing frequency value of lower peak
upper_peak_widget: widget containing frequency value of upper peak
Poststate: populates fit_data_set with manual corrections
"""
lower_peak_manual = [np.nan] * len(fit_data_set)
upper_peak_manual = [np.nan] * len(fit_data_set)
filepath = os.path.join(target_folder, folder[2:])
data_filepath = os.path.join(filepath, 'data-manual.csv')
if os.path.exists(data_filepath):
prev_data = pd.read_csv(data_filepath)
if 'manual_peak_1' in list(prev_data.keys()):
for i in range(0, len(prev_data['manual_B_field'])):
b_field_manual[i] = prev_data['manual_B_field'][i]
nv_type_manual[i] = prev_data['manual_nv_type'][i]
lower_peak_manual = prev_data['manual_peak_1']
upper_peak_manual = prev_data['manual_peak_2']
#TODO: Add saving as you go, add ability to start at arbitrary NV, add ability to specify a next NV number, eliminate peak/correct -> only have 'accept fit'
try:
print('STARTING')
fit_data_set_array = fit_data_set.as_matrix()
w = widgets.HTML("Event information appears here when you click on the figure")
display(w)
# loop over all the folders in the data_subscripts subfolder and retrieve fitparameters and position of NV
esr_folders = glob.glob(os.path.join(folder, '.\\data_subscripts\\*esr*'))
# create folder to save images to
# filepath_image = os.path.join(target_folder, os.path.dirname(folder).split('./')[1])
# image_folder = os.path.join(filepath_image, '{:s}\\images'.format(os.path.basename(folder)))
image_folder = os.path.join(target_folder, '{:s}\\images'.format(folder[2:]))
# image_folder = os.path.normpath(
# os.path.abspath(os.path.join(os.path.join(target_folder, 'images'), os.path.basename(folders[0]))))
if not os.path.exists(image_folder):
os.makedirs(image_folder)
if not os.path.exists(os.path.join(image_folder, 'bad_data')):
os.makedirs(os.path.join(image_folder, 'bad_data'))
f = plt.figure(figsize=(12, 6))
def onclick(event):
if event.button == 1:
if event.key == 'control':
lower_fit_widget.value = event.xdata
else:
lower_peak_widget.value = event.xdata
elif event.button == 3:
if event.key == 'control':
upper_fit_widget.value = event.xdata
else:
upper_peak_widget.value = event.xdata
cid = f.canvas.mpl_connect('button_press_event', onclick)
data_array = []
data_pos_array = []
for esr_folder in esr_folders:
print(esr_folder)
sys.stdout.flush()
data = Script.load_data(esr_folder)
data_array.append(data)
print('looping')
sys.stdout.flush()
nv_folders = glob.glob(folder + '\\data_subscripts\\*find_nv*pt_*')
for nv_folder in nv_folders:
data_pos_array.append(Script.load_data(nv_folder))
while True:
# for i, esr_folder in enumerate(esr_folders):
i = current_id_queue.queue[0]
if i >= len(data_array):
break
lower_fit_widget.value = 0
#.........這裏部分代碼省略.........
示例3: run
# 需要導入模塊: from pylabcontrol.core import Script [as 別名]
# 或者: from pylabcontrol.core.Script import load_data [as 別名]
def run(self):
"""
Code to run fitting routine. Should be run in a separate thread from the gui.
"""
esr_folders = glob.glob(os.path.join(self.filepath, './data_subscripts/*esr*'))
data_array = []
self.status.emit('loading data')
for esr_folder in esr_folders[:-1]:
data = Script.load_data(esr_folder)
data_array.append(data)
self.fits = self.load_fitdata()
self.status.emit('executing manual fitting')
index = 0
self.last_good = []
self.initial_fit = False
# for data in data_array:
while index < len(data_array):
data = data_array[index]
#this must be after the draw command, otherwise plot doesn't display for some reason
self.status.emit('executing manual fitting NV #' + str(index))
self.plotwidget.axes.clear()
self.plotwidget.axes.plot(data['frequency'], data['data'])
if index in self.fits['nv_id'].values:
fitdf = self.fits.loc[(self.fits['nv_id'] == index)]
offset = fitdf['offset'].as_matrix()[0]
centers = fitdf['fit_center'].as_matrix()
amplitudes = fitdf['fit_amplitude'].as_matrix()
widths = fitdf['fit_width'].as_matrix()
fit_params = np.concatenate((np.concatenate((widths, amplitudes)), centers))
self.plotwidget.axes.plot(data['frequency'], self.n_lorentzian(data['frequency'], *np.concatenate(([offset], fit_params))))
self.plotwidget.draw()
if not self.last_good == []:
self.initial_fit = True
self.queue.put('fit')
while(True):
if self.queue.empty():
time.sleep(.5)
else:
value = self.queue.get()
if value == 'next':
while not self.peak_vals == []:
self.last_good.append(self.peak_vals.pop(-1))
if self.single_fit:
to_delete = np.where(self.fits['nv_id'].values == index)
# print(self.fits[to_delete])
self.fits = self.fits.drop(self.fits.index[to_delete])
# for val in to_delete[0][::-1]:
# for key in self.fits.keys():
# del self.fits[key][val]
for peak in self.single_fit:
self.fits = self.fits.append(pd.DataFrame(peak))
index += 1
self.status.emit('saving')
self.save()
break
elif value == 'clear':
self.last_good = []
self.plotwidget.axes.clear()
self.plotwidget.axes.plot(data['frequency'], data['data'])
self.plotwidget.draw()
elif value == 'fit':
if self.initial_fit:
input = self.last_good
else:
input = self.peak_vals
if len(input) > 1:
centers, heights = list(zip(*input))
widths = 1e7 * np.ones(len(heights))
elif len(input) == 1:
centers, heights = input[0]
widths = 1e7
elif len(input) == 0:
self.single_fit = None
self.peak_locs.setText('No Peak')
self.plotwidget.axes.plot(data['frequency'],np.repeat(np.mean(data['data']), len(data['frequency'])))
self.plotwidget.draw()
continue
offset = np.mean(data['data'])
amplitudes = offset-np.array(heights)
if len(input) > 1:
fit_start_params = [[offset], np.concatenate((widths, amplitudes, centers))]
fit_start_params = [y for x in fit_start_params for y in x]
elif len(input) == 1:
fit_start_params = [offset, widths, amplitudes, centers]
try:
popt = self.fit_n_lorentzian(data['frequency'], data['data'], fit_start_params = fit_start_params)
except RuntimeError:
print('fit failed, optimal parameters not found')
break
self.plotwidget.axes.clear()
self.plotwidget.axes.plot(data['frequency'], data['data'])
self.plotwidget.axes.plot(data['frequency'], self.n_lorentzian(data['frequency'], *popt))
self.plotwidget.draw()
params = popt[1:]
#.........這裏部分代碼省略.........
示例4: autofit_esrs
# 需要導入模塊: from pylabcontrol.core import Script [as 別名]
# 或者: from pylabcontrol.core.Script import load_data [as 別名]
def autofit_esrs(folder):
"""
fits the esr data, plots them and asks the user for confirmation, the fit data is saved to the folder target_folder with the same structure as folders
Args:
folders: source folder with esr data, this folder shoudl contain a subfolder data_subscripts which contains subfolders *esr* with the esr data
target_folder: target folder where the output data is saved in form of a .csv file
Returns: fitdataset as a pandas array
"""
# loop over all the folders in the data_subscripts subfolder and retrieve fitparameters and position of NV
esr_folders = glob.glob(os.path.join(folder, './data_subscripts/*esr*'))
fit_data_set = None
# classify the nvs according to the following categories
# by default we set this to na (not available) and try to figure it out based on the data and fitquality
# nv_type = 'na' # split / single / no_peak / no_nv / na
for i, esr_folder in enumerate(esr_folders):
# find the NV index
pt_id = int(os.path.basename(esr_folder).split('pt_')[-1])
findnv_folder = sorted(glob.glob(folder + '/data_subscripts/*find_nv*pt_*{:d}'.format(pt_id)))[0]
# load data
data = Script.load_data(esr_folder)
fit_params = fit_esr(data['frequency'], data['data'])
nv_type = get_nv_type(fit_params)
# get initial guess for peaks
freq_peaks, ampl_peaks = find_nv_peaks(data['frequency'], data['data'])
# get nv positions
data_pos = Script.load_data(findnv_folder)
pos = data_pos['maximum_point']
pos_init = data_pos['initial_point']
if fit_params is None:
fit_data_set_single = {}
else:
fit_data_set_single = {'fit_{:d}'.format(i): f for i, f in enumerate(fit_params)}
fit_data_set_single.update({'id': pt_id, 'NV type': nv_type})
fit_data_set_single.update({'x': pos['x'][0], 'y': pos['y'][0]})
fit_data_set_single.update({'xo': pos_init['x'][0], 'yo': pos_init['y'][0]})
fit_data_set_single.update({'B-field (gauss)': get_B_field(nv_type, fit_params)})
# convert to dataframe
fit_data_set_single = pd.DataFrame.from_dict({k: [v] for k, v in fit_data_set_single.items()})
if fit_data_set is None:
fit_data_set = pd.DataFrame(fit_data_set_single)
else:
fit_data_set = fit_data_set.append(fit_data_set_single, ignore_index=True)
return fit_data_set
示例5: run
# 需要導入模塊: from pylabcontrol.core import Script [as 別名]
# 或者: from pylabcontrol.core.Script import load_data [as 別名]
def run(self):
print('_____>>>', self.filepath)
if str(self.filepath).endswith('.h5'):
print('loading from .h5')
file = h5py.File(self.filepath, 'r')
print('UUUU', file.keys())
data_esr_norm = file['esr_map']
self.frequencies = file['frequency']
# print('loading freq from data_subscripts')
#
# sub_fs = glob.glob(os.path.join(os.path.dirname(self.filepath), 'data_subscripts/*'))
# print('sssss', sub_fs)
#
# print('ASAAAA', sub_fs[0])
#
#
# f = glob.glob(os.path.join(os.path.dirname(self.filepath), 'data_subscripts/*'))[0]
# data = Script.load_data(f)
# self.frequencies = data['frequency']
else:
print('loading from data_subscripts')
data_esr = []
for f in sorted(glob.glob(os.path.join(self.filepath, './data_subscripts/*'))):
data = Script.load_data(f)
data_esr.append(data['data'])
self.frequencies = data['frequency']
# normalize
norm = 'quantile'
norm_parameter = 0.75
if norm == 'mean':
norm_value = [np.mean(d) for d in data_esr]
elif norm == 'border':
if norm_parameter > 0:
norm_value = [np.mean(d[0:norm_parameter]) for d in data_esr]
elif norm_parameter < 0:
norm_value = [np.mean(d[norm_parameter:]) for d in data_esr]
elif norm == 'quantile':
norm_value = [np.quantile(d, norm_parameter) for d in data_esr]
data_esr_norm = np.array([d / n for d, n in zip(data_esr, norm_value)]) # normalize and convert to numpy array
# data_esr_norm = []
# for d in data_esr:
# data_esr_norm.append(d / np.mean(d))
angle = np.arange(len(data_esr_norm))
print('<<<<<<<', self.frequencies.shape, angle.shape, data_esr_norm.shape)
self.x_range = list(range(0, len(data_esr_norm)))
self.status.emit('executing manual fitting')
index = 0
# for data in data_array:
while index < self.NUM_ESR_LINES:
#this must be after the draw command, otherwise plot doesn't display for some reason
self.status.emit('executing manual fitting NV #' + str(index))
self.plotwidget.axes.clear()
self.plotwidget.axes.pcolor(self.frequencies, angle, data_esr_norm)
# self.plotwidget.axes.imshow(data_esr_norm, aspect = 'auto', origin = 'lower')
if self.interps:
for f in self.interps:
self.plotwidget.axes.plot(f(self.x_range), self.x_range)
self.plotwidget.draw()
while(True):
if self.queue.empty():
time.sleep(.5)
else:
value = self.queue.get()
if value == 'next':
while not self.peak_vals == []:
self.peak_vals.pop(-1)
# if len(self.single_fit) == 1:
# self.fits[index] = self.single_fit
# else:
# self.fits[index] = [y for x in self.single_fit for y in x]
index += 1
self.interps.append(f)
break
elif value == 'clear':
self.plotwidget.axes.clear()
self.plotwidget.axes.imshow(data_esr_norm, aspect='auto', origin = 'lower')
if self.interps:
for f in self.interps:
self.plotwidget.axes.plot(f(self.x_range), self.x_range)
self.plotwidget.draw()
elif value == 'fit':
# peak_vals = sorted(self.peak_vals, key=lambda tup: tup[1])
peak_vals = np.array(self.peak_vals)
print('ggggg', peak_vals.shape)
y, x = peak_vals[:,0], peak_vals[:, 1]
#.........這裏部分代碼省略.........