當前位置: 首頁>>代碼示例>>Python>>正文


Python Script.load_data方法代碼示例

本文整理匯總了Python中pylabcontrol.core.Script.load_data方法的典型用法代碼示例。如果您正苦於以下問題:Python Script.load_data方法的具體用法?Python Script.load_data怎麽用?Python Script.load_data使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pylabcontrol.core.Script的用法示例。


在下文中一共展示了Script.load_data方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: visualize_magnetic_fields

# 需要導入模塊: from pylabcontrol.core import Script [as 別名]
# 或者: from pylabcontrol.core.Script import load_data [as 別名]
def visualize_magnetic_fields(src_folder, target_folder, manual=True):
    filepath = os.path.join(target_folder, os.path.dirname(src_folder).split('./')[1])

    # load the fit_data
    if manual:
        #         df = pd.read_csv(os.path.join(target_folder, '{:s}-manual.csv'.format(folder.split('./')[1].replace('/','-'))), index_col = 'id', skipinitialspace=True)
        filename = '{:s}\\data-manual.csv'.format(os.path.basename(src_folder))
    else:
        filename = '{:s}.csv'.format(os.path.basename(src_folder))
    # df = pd.read_csv(os.path.join(target_folder, '{:s}.csv'.format(folder.split('./')[1].replace('/','-'))), index_col = 'id', skipinitialspace=True)
    df = pd.read_csv(os.path.join(filepath, filename), index_col='id', skipinitialspace=True)
    df = df.drop('Unnamed: 0', 1)

    # include manual corrections
    if manual:
        for id, nv_type in enumerate(df['manual_nv_type']):
            if not pd.isnull(nv_type):
                df.set_value(id, 'NV type', nv_type)
                if nv_type == 'split':
                    df.set_value(id, 'B-field (gauss)', df.get_value(id, 'manual_B_field'))

    # load the image data
    select_points_data = Script.load_data(get_select_points(src_folder))
    image_data = select_points_data['image_data']
    #     points_data = select_points_data['nv_locations']
    extent = select_points_data['extent']

    # prepare figure
    f = plt.figure(figsize=(15, 8))
    gs = gridspec.GridSpec(1, 2, height_ratios=[1, 1])
    ax0 = plt.subplot(gs[0])
    ax1 = plt.subplot(gs[1])
    ax = [ax0, ax1]

    # plot the map
    ax0.imshow(image_data, extent=extent, interpolation='nearest', cmap='pink')

    for nv_type, color in zip(['split', 'bad', 'no_peak', 'single'], ['g', 'k', 'b', 'r']):
        subset = df[df['NV type'] == nv_type]
        ax0.scatter(subset['xo'], subset['yo'], c=color, label=nv_type)

    ax0.legend(bbox_to_anchor=(2.3, 1))

    subset = df[df['NV type'] == 'split']
    for i, j, n in zip(subset['xo'], subset['yo'], subset.index):
        corr = +0.005  # adds a little correction to put annotation in marker's centrum
        ax0.annotate(str(n), xy=(i + corr, j + corr), fontsize=8, color='w')
    ax0.set_xlabel('x (V)')
    ax0.set_ylabel('y (V)')

    # plot the fields on a 1D plot
    subset = df[df['NV type'] == 'split']
    ax1.plot(subset['xo'], subset['B-field (gauss)'] / freq_to_mag * 1e-6, 'o')
    ax1.set_title('ESR Splittings')
    ax1.set_xlabel('x coordinate (V)')
    ax1.set_ylabel('Splitting (MHz)')
    ax1.set_xlim([extent[0], extent[1]])

    ax2 = ax1.twinx()
    mn, mx = ax1.get_ylim()
    ax2.set_ylim(mn * freq_to_mag * 1e6, mx * freq_to_mag * 1e6)
    ax2.set_ylabel('Magnetic Field Projection (Gauss)')

    for i, j, n in zip(subset['xo'], subset['B-field (gauss)'] / freq_to_mag * 1e-6, subset.index):
        corr = 0.0005  # adds a little correction to put annotation in marker's centrum
        ax1.annotate(str(n), xy=(i + corr, j + corr))

    # f.set_tight_layout(True)

    #     f.savefig(os.path.join(target_folder, '{:s}.jpg'.format(os.path.basename(folder))),
    #                bbox_inches='tight',
    # #                transparent=True,
    #                pad_inches=0)

    f.savefig(os.path.join(filepath, '{:s}.jpg'.format(os.path.basename(src_folder))),
              bbox_inches='tight',
              #                transparent=True,
              pad_inches=0)
開發者ID:LISE-B26,項目名稱:b26_toolkit,代碼行數:80,代碼來源:esr_post_processing.py

示例2: manual_correction

# 需要導入模塊: from pylabcontrol.core import Script [as 別名]
# 或者: from pylabcontrol.core.Script import load_data [as 別名]
def manual_correction(folder, target_folder, fit_data_set, nv_type_manual, b_field_manual, queue, current_id_queue, lower_peak_widget, upper_peak_widget, lower_fit_widget, upper_fit_widget):
    """
    Backend code to display and fit ESRs, then once input has been received from front-end, incorporate the data into the
    current data set

    Args:
        folders: folder containing the data to analyze
        target_folder: target for processed data
        fit_data_set: starting point data set containing automatically fitted esrs
        nv_type_manual: pointer to empty array to populate with nv type manual corrections
        b_field_manual: pointer to empty array to populate with b field manual corrections
        queue: queue for communication with front-end in separate thread
        lower_peak_widget: widget containing frequency value of lower peak
        upper_peak_widget: widget containing frequency value of upper peak

    Poststate: populates fit_data_set with manual corrections
    """

    lower_peak_manual = [np.nan] * len(fit_data_set)
    upper_peak_manual = [np.nan] * len(fit_data_set)

    filepath = os.path.join(target_folder, folder[2:])
    data_filepath = os.path.join(filepath, 'data-manual.csv')
    if os.path.exists(data_filepath):
        prev_data = pd.read_csv(data_filepath)
        if 'manual_peak_1' in list(prev_data.keys()):
            for i in range(0, len(prev_data['manual_B_field'])):
                b_field_manual[i] = prev_data['manual_B_field'][i]
                nv_type_manual[i] = prev_data['manual_nv_type'][i]
            lower_peak_manual = prev_data['manual_peak_1']
            upper_peak_manual = prev_data['manual_peak_2']


    #TODO: Add saving as you go, add ability to start at arbitrary NV, add ability to specify a next NV number, eliminate peak/correct -> only have 'accept fit'

    try:


        print('STARTING')

        fit_data_set_array = fit_data_set.as_matrix()

        w = widgets.HTML("Event information appears here when you click on the figure")
        display(w)

        # loop over all the folders in the data_subscripts subfolder and retrieve fitparameters and position of NV
        esr_folders = glob.glob(os.path.join(folder, '.\\data_subscripts\\*esr*'))

        # create folder to save images to
        # filepath_image = os.path.join(target_folder, os.path.dirname(folder).split('./')[1])
        # image_folder = os.path.join(filepath_image, '{:s}\\images'.format(os.path.basename(folder)))
        image_folder = os.path.join(target_folder, '{:s}\\images'.format(folder[2:]))
        # image_folder = os.path.normpath(
        #     os.path.abspath(os.path.join(os.path.join(target_folder, 'images'), os.path.basename(folders[0]))))
        if not os.path.exists(image_folder):
            os.makedirs(image_folder)
        if not os.path.exists(os.path.join(image_folder, 'bad_data')):
            os.makedirs(os.path.join(image_folder, 'bad_data'))

        f = plt.figure(figsize=(12, 6))

        def onclick(event):
            if event.button == 1:
                if event.key == 'control':
                    lower_fit_widget.value = event.xdata
                else:
                    lower_peak_widget.value = event.xdata
            elif event.button == 3:
                if event.key == 'control':
                    upper_fit_widget.value = event.xdata
                else:
                    upper_peak_widget.value = event.xdata

        cid = f.canvas.mpl_connect('button_press_event', onclick)

        data_array = []
        data_pos_array = []
        for esr_folder in esr_folders:
            print(esr_folder)
            sys.stdout.flush()
            data = Script.load_data(esr_folder)
            data_array.append(data)
            print('looping')
            sys.stdout.flush()


        nv_folders = glob.glob(folder + '\\data_subscripts\\*find_nv*pt_*')
        for nv_folder in nv_folders:
            data_pos_array.append(Script.load_data(nv_folder))

        while True:


        # for i, esr_folder in enumerate(esr_folders):

            i = current_id_queue.queue[0]
            if i >= len(data_array):
                break

            lower_fit_widget.value = 0
#.........這裏部分代碼省略.........
開發者ID:LISE-B26,項目名稱:b26_toolkit,代碼行數:103,代碼來源:esr_post_processing.py

示例3: run

# 需要導入模塊: from pylabcontrol.core import Script [as 別名]
# 或者: from pylabcontrol.core.Script import load_data [as 別名]
        def run(self):
            """
            Code to run fitting routine. Should be run in a separate thread from the gui.
            """
            esr_folders = glob.glob(os.path.join(self.filepath, './data_subscripts/*esr*'))

            data_array = []
            self.status.emit('loading data')
            for esr_folder in esr_folders[:-1]:
                data = Script.load_data(esr_folder)
                data_array.append(data)

            self.fits = self.load_fitdata()

            self.status.emit('executing manual fitting')
            index = 0
            self.last_good = []
            self.initial_fit = False
            # for data in data_array:
            while index < len(data_array):
                data = data_array[index]
                #this must be after the draw command, otherwise plot doesn't display for some reason
                self.status.emit('executing manual fitting NV #' + str(index))
                self.plotwidget.axes.clear()
                self.plotwidget.axes.plot(data['frequency'], data['data'])
                if index in self.fits['nv_id'].values:
                    fitdf = self.fits.loc[(self.fits['nv_id'] == index)]
                    offset = fitdf['offset'].as_matrix()[0]
                    centers = fitdf['fit_center'].as_matrix()
                    amplitudes = fitdf['fit_amplitude'].as_matrix()
                    widths = fitdf['fit_width'].as_matrix()
                    fit_params = np.concatenate((np.concatenate((widths, amplitudes)), centers))
                    self.plotwidget.axes.plot(data['frequency'], self.n_lorentzian(data['frequency'], *np.concatenate(([offset], fit_params))))
                self.plotwidget.draw()

                if not self.last_good == []:
                    self.initial_fit = True
                    self.queue.put('fit')

                while(True):
                    if self.queue.empty():
                        time.sleep(.5)
                    else:
                        value = self.queue.get()
                        if value == 'next':
                            while not self.peak_vals == []:
                                self.last_good.append(self.peak_vals.pop(-1))
                            if self.single_fit:
                                to_delete = np.where(self.fits['nv_id'].values == index)
                                # print(self.fits[to_delete])
                                self.fits = self.fits.drop(self.fits.index[to_delete])
                                # for val in to_delete[0][::-1]:
                                #     for key in self.fits.keys():
                                #         del self.fits[key][val]
                                for peak in self.single_fit:
                                    self.fits = self.fits.append(pd.DataFrame(peak))

                            index += 1
                            self.status.emit('saving')
                            self.save()
                            break
                        elif value == 'clear':
                            self.last_good = []
                            self.plotwidget.axes.clear()
                            self.plotwidget.axes.plot(data['frequency'], data['data'])
                            self.plotwidget.draw()
                        elif value == 'fit':
                            if self.initial_fit:
                                input = self.last_good
                            else:
                                input = self.peak_vals
                            if len(input) > 1:
                                centers, heights = list(zip(*input))
                                widths = 1e7 * np.ones(len(heights))
                            elif len(input) == 1:
                                centers, heights = input[0]
                                widths = 1e7
                            elif len(input) == 0:
                                self.single_fit = None
                                self.peak_locs.setText('No Peak')
                                self.plotwidget.axes.plot(data['frequency'],np.repeat(np.mean(data['data']), len(data['frequency'])))
                                self.plotwidget.draw()
                                continue
                            offset = np.mean(data['data'])
                            amplitudes = offset-np.array(heights)
                            if len(input) > 1:
                                fit_start_params = [[offset], np.concatenate((widths, amplitudes, centers))]
                                fit_start_params = [y for x in fit_start_params for y in x]
                            elif len(input) == 1:
                                fit_start_params = [offset, widths, amplitudes, centers]
                            try:
                                popt = self.fit_n_lorentzian(data['frequency'], data['data'], fit_start_params = fit_start_params)
                            except RuntimeError:
                                print('fit failed, optimal parameters not found')
                                break
                            self.plotwidget.axes.clear()
                            self.plotwidget.axes.plot(data['frequency'], data['data'])
                            self.plotwidget.axes.plot(data['frequency'], self.n_lorentzian(data['frequency'], *popt))
                            self.plotwidget.draw()
                            params = popt[1:]
#.........這裏部分代碼省略.........
開發者ID:LISE-B26,項目名稱:b26_toolkit,代碼行數:103,代碼來源:manual_fitting.py

示例4: autofit_esrs

# 需要導入模塊: from pylabcontrol.core import Script [as 別名]
# 或者: from pylabcontrol.core.Script import load_data [as 別名]
def autofit_esrs(folder):
    """

    fits the esr data, plots them and asks the user for confirmation, the fit data is saved to the folder target_folder with the same structure as folders

    Args:
        folders: source folder with esr data, this folder shoudl contain a subfolder data_subscripts which contains subfolders *esr* with the esr data
        target_folder: target folder where the output data is saved in form of a .csv file

    Returns: fitdataset as a pandas array

    """
    # loop over all the folders in the data_subscripts subfolder and retrieve fitparameters and position of NV
    esr_folders = glob.glob(os.path.join(folder, './data_subscripts/*esr*'))

    fit_data_set = None

    # classify the nvs according to the following categories
    # by default we set this to na (not available) and try to figure it out based on the data and fitquality
    # nv_type = 'na' # split / single / no_peak / no_nv / na

    for i, esr_folder in enumerate(esr_folders):

        # find the NV index
        pt_id = int(os.path.basename(esr_folder).split('pt_')[-1])

        findnv_folder =  sorted(glob.glob(folder + '/data_subscripts/*find_nv*pt_*{:d}'.format(pt_id)))[0]

        # load data
        data = Script.load_data(esr_folder)
        fit_params = fit_esr(data['frequency'], data['data'])
        nv_type = get_nv_type(fit_params)

        # get initial guess for peaks
        freq_peaks, ampl_peaks = find_nv_peaks(data['frequency'], data['data'])

        # get nv positions
        data_pos = Script.load_data(findnv_folder)
        pos = data_pos['maximum_point']
        pos_init = data_pos['initial_point']

        if fit_params is None:
            fit_data_set_single = {}
        else:
            fit_data_set_single = {'fit_{:d}'.format(i): f for i, f in enumerate(fit_params)}

        fit_data_set_single.update({'id': pt_id, 'NV type': nv_type})

        fit_data_set_single.update({'x': pos['x'][0], 'y': pos['y'][0]})
        fit_data_set_single.update({'xo': pos_init['x'][0], 'yo': pos_init['y'][0]})

        fit_data_set_single.update({'B-field (gauss)': get_B_field(nv_type, fit_params)})

        # convert to dataframe
        fit_data_set_single = pd.DataFrame.from_dict({k: [v] for k, v in fit_data_set_single.items()})

        if fit_data_set is None:
            fit_data_set = pd.DataFrame(fit_data_set_single)
        else:
            fit_data_set = fit_data_set.append(fit_data_set_single, ignore_index=True)

    return fit_data_set
開發者ID:LISE-B26,項目名稱:b26_toolkit,代碼行數:64,代碼來源:esr_post_processing.py

示例5: run

# 需要導入模塊: from pylabcontrol.core import Script [as 別名]
# 或者: from pylabcontrol.core.Script import load_data [as 別名]
        def run(self):

            print('_____>>>', self.filepath)
            if str(self.filepath).endswith('.h5'):
                print('loading from .h5')
                file = h5py.File(self.filepath, 'r')
                print('UUUU', file.keys())
                data_esr_norm = file['esr_map']
                self.frequencies = file['frequency']
                # print('loading freq from data_subscripts')

                #
                # sub_fs = glob.glob(os.path.join(os.path.dirname(self.filepath), 'data_subscripts/*'))
                # print('sssss', sub_fs)
                #
                # print('ASAAAA', sub_fs[0])
                #
                #
                # f = glob.glob(os.path.join(os.path.dirname(self.filepath), 'data_subscripts/*'))[0]
                # data = Script.load_data(f)
                # self.frequencies = data['frequency']

            else:
                print('loading from data_subscripts')
                data_esr = []
                for f in sorted(glob.glob(os.path.join(self.filepath, './data_subscripts/*'))):
                    data = Script.load_data(f)
                    data_esr.append(data['data'])
                self.frequencies = data['frequency']

                # normalize
                norm = 'quantile'
                norm_parameter = 0.75
                if norm == 'mean':
                    norm_value = [np.mean(d) for d in data_esr]
                elif norm == 'border':
                    if norm_parameter > 0:
                        norm_value = [np.mean(d[0:norm_parameter]) for d in data_esr]
                    elif norm_parameter < 0:
                        norm_value = [np.mean(d[norm_parameter:]) for d in data_esr]
                elif norm == 'quantile':
                    norm_value = [np.quantile(d, norm_parameter) for d in data_esr]

                data_esr_norm = np.array([d / n for d, n in zip(data_esr, norm_value)])  # normalize and convert to numpy array


            # data_esr_norm = []
            # for d in data_esr:
            #     data_esr_norm.append(d / np.mean(d))

            angle = np.arange(len(data_esr_norm))
            print('<<<<<<<', self.frequencies.shape, angle.shape, data_esr_norm.shape)


            self.x_range = list(range(0, len(data_esr_norm)))

            self.status.emit('executing manual fitting')
            index = 0
            # for data in data_array:
            while index < self.NUM_ESR_LINES:
                #this must be after the draw command, otherwise plot doesn't display for some reason
                self.status.emit('executing manual fitting NV #' + str(index))
                self.plotwidget.axes.clear()
                self.plotwidget.axes.pcolor(self.frequencies, angle, data_esr_norm)
                # self.plotwidget.axes.imshow(data_esr_norm, aspect = 'auto', origin = 'lower')
                if self.interps:
                    for f in self.interps:
                        self.plotwidget.axes.plot(f(self.x_range), self.x_range)

                self.plotwidget.draw()

                while(True):
                    if self.queue.empty():
                        time.sleep(.5)
                    else:
                        value = self.queue.get()
                        if value == 'next':
                            while not self.peak_vals == []:
                                self.peak_vals.pop(-1)
                            # if len(self.single_fit) == 1:
                            #     self.fits[index] = self.single_fit
                            # else:
                            #     self.fits[index] = [y for x in self.single_fit for y in x]
                            index += 1
                            self.interps.append(f)
                            break
                        elif value == 'clear':
                            self.plotwidget.axes.clear()
                            self.plotwidget.axes.imshow(data_esr_norm, aspect='auto', origin = 'lower')
                            if self.interps:
                                for f in self.interps:
                                    self.plotwidget.axes.plot(f(self.x_range), self.x_range)
                            self.plotwidget.draw()
                        elif value == 'fit':
                            # peak_vals = sorted(self.peak_vals, key=lambda tup: tup[1])
                            peak_vals = np.array(self.peak_vals)
                            print('ggggg', peak_vals.shape)
                            y, x = peak_vals[:,0], peak_vals[:, 1]


#.........這裏部分代碼省略.........
開發者ID:LISE-B26,項目名稱:b26_toolkit,代碼行數:103,代碼來源:manual_fitting_ensemble.py


注:本文中的pylabcontrol.core.Script.load_data方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。