本文整理匯總了Python中pygeoc.utils.FileClass.check_file_exists方法的典型用法代碼示例。如果您正苦於以下問題:Python FileClass.check_file_exists方法的具體用法?Python FileClass.check_file_exists怎麽用?Python FileClass.check_file_exists使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pygeoc.utils.FileClass
的用法示例。
在下文中一共展示了FileClass.check_file_exists方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: convert_code
# 需要導入模塊: from pygeoc.utils import FileClass [as 別名]
# 或者: from pygeoc.utils.FileClass import check_file_exists [as 別名]
def convert_code(in_file, out_file, in_alg='taudem', out_alg='arcgis', datatype=None):
"""
convert D8 flow direction code from one algorithm to another.
Args:
in_file: input raster file path
out_file: output raster file path
in_alg: available algorithms are in FlowModelConst.d8_dirs. "taudem" is the default
out_alg: same as in_alg. "arcgis" is the default
datatype: default is None and use the datatype of the in_file
"""
FileClass.check_file_exists(in_file)
in_alg = in_alg.lower()
out_alg = out_alg.lower()
if in_alg not in FlowModelConst.d8_dirs or out_alg not in FlowModelConst.d8_dirs:
raise RuntimeError('The input algorithm name should one of %s' %
', '.join(list(FlowModelConst.d8_dirs.keys())))
convert_dict = dict()
in_code = FlowModelConst.d8_dirs.get(in_alg)
out_code = FlowModelConst.d8_dirs.get(out_alg)
assert len(in_code) == len(out_code)
for i, tmp_in_code in enumerate(in_code):
convert_dict[tmp_in_code] = out_code[i]
if datatype is not None and datatype in GDALDataType:
RasterUtilClass.raster_reclassify(in_file, convert_dict, out_file, datatype)
else:
RasterUtilClass.raster_reclassify(in_file, convert_dict, out_file)
示例2: mask_origin_delineated_data
# 需要導入模塊: from pygeoc.utils import FileClass [as 別名]
# 或者: from pygeoc.utils.FileClass import check_file_exists [as 別名]
def mask_origin_delineated_data(cfg):
"""Mask the original delineated data by Subbasin raster."""
subbasin_tau_file = cfg.taudems.subbsn
geodata2dbdir = cfg.dirs.geodata2db
UtilClass.mkdir(geodata2dbdir)
mask_file = cfg.spatials.mask
RasterUtilClass.get_mask_from_raster(subbasin_tau_file, mask_file)
# Total 12 raster files
original_files = [cfg.taudems.subbsn, cfg.taudems.d8flow, cfg.taudems.stream_raster,
cfg.taudems.slp, cfg.taudems.filldem, cfg.taudems.d8acc,
cfg.taudems.stream_order, cfg.taudems.dinf, cfg.taudems.dinf_d8dir,
cfg.taudems.dinf_slp, cfg.taudems.dinf_weight,
cfg.taudems.dist2stream_d8]
# output masked files
output_files = [cfg.taudems.subbsn_m, cfg.taudems.d8flow_m, cfg.taudems.stream_m,
cfg.spatials.slope, cfg.spatials.filldem, cfg.spatials.d8acc,
cfg.spatials.stream_order, cfg.spatials.dinf, cfg.spatials.dinf_d8dir,
cfg.spatials.dinf_slp, cfg.spatials.dinf_weight,
cfg.spatials.dist2stream_d8]
default_values = list()
for i in range(len(original_files)):
default_values.append(DEFAULT_NODATA)
# other input rasters need to be masked
# soil and landuse
FileClass.check_file_exists(cfg.soil)
FileClass.check_file_exists(cfg.landuse)
original_files.append(cfg.soil)
output_files.append(cfg.spatials.soil_type)
default_values.append(cfg.default_soil)
original_files.append(cfg.landuse)
output_files.append(cfg.spatials.landuse)
default_values.append(cfg.default_landuse)
# Additional raster file
for k, v in cfg.additional_rs.items():
org_v = v
if not FileClass.is_file_exists(org_v):
v = cfg.spatial_dir + os.path.sep + org_v
if not FileClass.is_file_exists(v):
print('WARNING: The additional file %s MUST be located in '
'SPATIAL_DATA_DIR, or provided as full file path!' % k)
continue
original_files.append(v)
output_files.append(cfg.dirs.geodata2db + os.path.sep + k + '.tif')
default_values.append(DEFAULT_NODATA)
config_file = cfg.logs.mask_cfg
# run mask operation
print('Mask original delineated data by Subbasin raster...')
SpatialDelineation.mask_raster_cpp(cfg.seims_bin, mask_file, original_files,
output_files, default_values, config_file)
示例3: read_crop_lookup_table
# 需要導入模塊: from pygeoc.utils import FileClass [as 別名]
# 或者: from pygeoc.utils.FileClass import check_file_exists [as 別名]
def read_crop_lookup_table(crop_lookup_file):
"""read crop lookup table"""
FileClass.check_file_exists(crop_lookup_file)
data_items = read_data_items_from_txt(crop_lookup_file)
attr_dic = dict()
fields = data_items[0]
n = len(fields)
for i in range(n):
attr_dic[fields[i]] = dict()
for items in data_items[1:]:
cur_id = int(items[0])
for i in range(n):
dic = attr_dic[fields[i]]
try:
dic[cur_id] = float(items[i])
except ValueError:
dic[cur_id] = items[i]
return attr_dic
示例4: raster2shp
# 需要導入模塊: from pygeoc.utils import FileClass [as 別名]
# 或者: from pygeoc.utils.FileClass import check_file_exists [as 別名]
def raster2shp(rasterfile, vectorshp, layername=None, fieldname=None,
band_num=1, mask='default'):
"""Convert raster to ESRI shapefile"""
FileClass.remove_files(vectorshp)
FileClass.check_file_exists(rasterfile)
# this allows GDAL to throw Python Exceptions
gdal.UseExceptions()
src_ds = gdal.Open(rasterfile)
if src_ds is None:
print('Unable to open %s' % rasterfile)
sys.exit(1)
try:
srcband = src_ds.GetRasterBand(band_num)
except RuntimeError as e:
# for example, try GetRasterBand(10)
print('Band ( %i ) not found, %s' % (band_num, e))
sys.exit(1)
if mask == 'default':
maskband = srcband.GetMaskBand()
elif mask is None or mask.upper() == 'NONE':
maskband = None
else:
mask_ds = gdal.Open(mask)
maskband = mask_ds.GetRasterBand(1)
# create output datasource
if layername is None:
layername = FileClass.get_core_name_without_suffix(rasterfile)
drv = ogr_GetDriverByName(str('ESRI Shapefile'))
dst_ds = drv.CreateDataSource(vectorshp)
srs = None
if src_ds.GetProjection() != '':
srs = osr_SpatialReference()
srs.ImportFromWkt(src_ds.GetProjection())
dst_layer = dst_ds.CreateLayer(str(layername), srs=srs)
if fieldname is None:
fieldname = layername.upper()
fd = ogr_FieldDefn(str(fieldname), OFTInteger)
dst_layer.CreateField(fd)
dst_field = 0
result = gdal.Polygonize(srcband, maskband, dst_layer, dst_field,
['8CONNECTED=8'], callback=None)
return result
示例5: __init__
# 需要導入模塊: from pygeoc.utils import FileClass [as 別名]
# 或者: from pygeoc.utils.FileClass import check_file_exists [as 別名]
def __init__(self, cf):
"""Initialization."""
SAConfig.__init__(self, cf) # initialize base class first
# Handling self.bmps_info for specific application
# 1. Check the required key and values
requiredkeys = ['COLLECTION', 'DISTRIBUTION', 'SUBSCENARIO', 'UPDOWNJSON',
'ENVEVAL', 'BASE_ENV']
for k in requiredkeys:
if k not in self.bmps_info:
raise ValueError('[%s]: MUST be provided!' % k)
# 2. Slope position units information
updownf = self.bmps_info.get('UPDOWNJSON')
FileClass.check_file_exists(updownf)
with open(updownf, 'r') as updownfo:
self.units_infos = json.load(updownfo)
self.units_infos = UtilClass.decode_strs_in_dict(self.units_infos)
# 3. Get slope position sequence
sptags = cf.get('BMPs', 'slppos_tag_name')
self.slppos_tags = json.loads(sptags)
self.slppos_tags = UtilClass.decode_strs_in_dict(self.slppos_tags)
self.slppos_tagnames = sorted(list(self.slppos_tags.items()), key=operator.itemgetter(0))
self.slppos_unit_num = self.units_infos['overview']['all_units']
self.slppos_to_gene = OrderedDict()
self.gene_to_slppos = dict()
# method 1: (deprecated)
# gene index: 0, 1, 2, ..., n
# slppos unit: rdg1, rdg2,..., bks1, bks2,..., vly1, vly2...
# idx = 0
# for tag, sp in self.slppos_tagnames:
# for uid in self.units_infos[sp]:
# self.gene_to_slppos[idx] = uid
# self.slppos_to_gene[uid] = idx
# idx += 1
# method 2:
# gene index: 0, 1, 2, ..., n
# slppos unit: rdg1, bks2, vly1,..., rdgn, bksn, vlyn
idx = 0
spname = self.slppos_tagnames[0][1]
for uid, udict in self.units_infos[spname].items():
spidx = 0
self.gene_to_slppos[idx] = uid
self.slppos_to_gene[uid] = idx
idx += 1
next_uid = udict['downslope']
while next_uid > 0:
self.gene_to_slppos[idx] = next_uid
self.slppos_to_gene[next_uid] = idx
idx += 1
spidx += 1
spname = self.slppos_tagnames[spidx][1]
next_uid = self.units_infos[spname][next_uid]['downslope']
assert (idx == self.slppos_unit_num)
# 4. SubScenario IDs and parameters read from MongoDB
self.bmps_subids = self.bmps_info.get('SUBSCENARIO')
self.bmps_coll = self.bmps_info.get('COLLECTION')
self.bmps_params = dict()
self.slppos_suit_bmps = dict()
self.read_bmp_parameters()
self.get_suitable_bmps_for_slppos()
示例6: __init__
# 需要導入模塊: from pygeoc.utils import FileClass [as 別名]
# 或者: from pygeoc.utils.FileClass import check_file_exists [as 別名]
def __init__(self, tag_names, slpposf, reach_shp, hillslpf, landusef):
"""Initialization.
Args:
tag_names: [tag(integer), name(str)], tag should be ascending from up to bottom.
slpposf: Crisp classification of slope position.
reach_shp: Reach shapefile used to extract the up-down relationships of subbasins
hillslpf: Delineated hillslope file by sd_hillslope.py.
landusef: Landuse, used to statistics areas of each landuse types within
slope position units
Attributes:
slppos_tags(OrderedDict): {tag: name}
subbsin_tree: up-down stream relationships of subbasins.
{subbsnID: {'upstream': [], 'downstream': []}}
units_updown_info: Output json data of slope position units.
{"slppos_1": {id:{"downslope": [ids], "upslope": [ids], "landuse": {luID: area}
"hillslope": [hillslpID], "subbasin": [subbsnID], "area": area
}
}
"slppos_2": ...
}
"""
# Check the file existance
FileClass.check_file_exists(slpposf)
FileClass.check_file_exists(reach_shp)
FileClass.check_file_exists(hillslpf)
FileClass.check_file_exists(landusef)
# Set inputs
self.ws = os.path.dirname(slpposf)
tag_names = sorted(tag_names, key=lambda x: x[0])
# initialize slope position dict with up-down relationships
self.slppos_tags = OrderedDict()
for idx, tagname in enumerate(tag_names):
tag, name = tagname
if len(tag_names) > 1:
if idx == 0:
self.slppos_tags[int(tag)] = {'name': name, 'upslope': -1,
'downslope': tag_names[idx + 1][0]}
elif idx == len(tag_names) - 1:
self.slppos_tags[int(tag)] = {'name': name, 'upslope': tag_names[idx - 1][0],
'downslope': -1}
else:
self.slppos_tags[int(tag)] = {'name': name, 'upslope': tag_names[idx - 1][0],
'downslope': tag_names[idx + 1][0]}
else:
self.slppos_tags[int(tag)] = {'name': name, 'upslope': -1, 'downslope': -1}
self.reach = reach_shp
# read raster data and check the extent based on hillslope.
hillslpr = RasterUtilClass.read_raster(hillslpf)
self.data_hillslp = hillslpr.data
self.nrows = hillslpr.nRows
self.ncols = hillslpr.nCols
self.dx = hillslpr.dx
self.nodata_hillslp = hillslpr.noDataValue
self.geotrans = hillslpr.geotrans
self.srs = hillslpr.srs
self.datatype = hillslpr.dataType
slpposr = RasterUtilClass.read_raster(slpposf)
if slpposr.nRows != self.nrows or slpposr.nCols != self.ncols:
raise ValueError('The slopeposition raster MUST have the same dimensions'
' with hillslope!')
self.data_slppos = slpposr.data
self.nodata_slppos = slpposr.noDataValue
landuser = RasterUtilClass.read_raster(landusef)
if landuser.nRows != self.nrows or landuser.nCols != self.ncols:
raise ValueError('The landuser raster MUST have the same dimensions'
' with hillslope!')
self.data_landuse = landuser.data
self.nodata_landuse = landuser.noDataValue
# Set intermediate data
self.subbsin_num = -1
self.subbsin_tree = dict()
self.units_updwon = OrderedDict()
for tag in self.slppos_tags:
self.units_updwon[self.slppos_tags.get(tag).get('name')] = dict()
self.slppos_ids = numpy.ones((self.nrows, self.ncols)) * DEFAULT_NODATA
self.hierarchy_units = dict()
# Set gene_values of outputs
self.outf_units_origin = self.ws + os.path.sep + 'slppos_units_origin_uniqueid.tif'
self.outshp_units_origin = self.ws + os.path.sep + 'origin_uniqueid.shp'
self.json_units_origin = self.ws + os.path.sep + 'original_updown.json'
self.outf_units_merged = self.ws + os.path.sep + 'slppos_units.tif'
self.outshp_units_merged = self.ws + os.path.sep + 'slppos_units_merged.shp'
self.json_units_merged = self.ws + os.path.sep + 'updown.json'
示例7: interpolate_observed_data_to_regular_interval
# 需要導入模塊: from pygeoc.utils import FileClass [as 別名]
# 或者: from pygeoc.utils.FileClass import check_file_exists [as 別名]
def interpolate_observed_data_to_regular_interval(in_file, time_interval, start_time, end_time,
eliminate_zero=False,
time_sys_output='UTCTIME', day_divided_hour=0):
"""
Interpolate not regular observed data to regular time interval data.
Args:
in_file: input data file, the basic format is as follows:
line 1: #<time_system> [<time_zone>], e.g., #LOCALTIME 8, #UTCTIME
line 2: DATETIME,field1,field2,...
line 3: YYYY-mm-dd HH:MM:SS,field1_value,field2_value,...
line 4: ...
...
Field name can be PCP, FLOW, SED
the unit is mm/h, m3/s, g/L (i.e., kg/m3), respectively.
time_interval: time interval, unit is minute, e.g., daily output is 1440
start_time: start time, the format must be 'YYYY-mm-dd HH:MM:SS', and the time system
is based on time_sys.
end_time: end time, see also start_time.
eliminate_zero: Boolean flag. If true, the time interval without original records will
not be output.
time_sys_output: time system of output time_system, the format must be
'<time_system> [<time_zone>]', e.g.,
'LOCALTIME'
'LOCALTIME 8'
'UTCTIME' (default)
day_divided_hour: If the time_interval is equal to N*1440, this parameter should be
carefully specified. The value must range from 0 to 23. e.g.,
day_divided_hour ==> day ranges (all expressed as 2013-02-03)
0 ==> 2013-02-03 00:00:00 to 2013-02-03 23:59:59 (default)
8 ==> 2013-02-03 08:00:00 to 2013-02-04 07:59:59
20 ==> 2013-02-03 20:00:00 to 2013-02-04 19:59:59
Returns:
The output data files are located in the same directory with the input file.
The nomenclature is: <field name>_<time system>_<time interval>_<nonzero>, e.g.,
pcp_utctime_1440_nonzero.txt, flow_localtime_60.txt
"""
FileClass.check_file_exists(in_file)
time_sys_input, time_zone_input = HydroClimateUtilClass.get_time_system_from_data_file(in_file)
data_items = read_data_items_from_txt(in_file)
flds = data_items[0][:]
data_items.remove(flds)
if not 0 <= day_divided_hour <= 23:
raise ValueError('Day divided hour must range from 0 to 23!')
try:
date_idx = flds.index('DATETIME')
flds.remove('DATETIME')
except ValueError:
raise ValueError('DATETIME must be one of the fields!')
# available field
available_flds = ['FLOW', 'SED', 'PCP']
def check_avaiable_field(cur_fld):
"""Check if the given field name is supported."""
support_flag = False
for fff in available_flds:
if fff.lower() in cur_fld.lower():
support_flag = True
break
return support_flag
ord_data = OrderedDict()
time_zone_output = time.timezone / -3600
if time_sys_output.lower().find('local') >= 0:
tmpstrs = StringClass.split_string(time_sys_output, [' '])
if len(tmpstrs) == 2 and MathClass.isnumerical(tmpstrs[1]):
time_zone_output = int(tmpstrs[1])
time_sys_output = 'LOCALTIME'
else:
time_sys_output = 'UTCTIME'
time_zone_output = 0
for item in data_items:
org_datetime = StringClass.get_datetime(item[date_idx])
if time_sys_input == 'LOCALTIME':
org_datetime -= timedelta(hours=time_zone_input)
# now, org_datetime is UTC time.
if time_sys_output == 'LOCALTIME':
org_datetime += timedelta(hours=time_zone_output)
# now, org_datetime is consistent with the output time system
ord_data[org_datetime] = list()
for i, v in enumerate(item):
if i == date_idx:
continue
if MathClass.isnumerical(v):
ord_data[org_datetime].append(float(v))
else:
ord_data[org_datetime].append(v)
# print(ord_data)
itp_data = OrderedDict()
out_time_delta = timedelta(minutes=time_interval)
sdatetime = StringClass.get_datetime(start_time)
edatetime = StringClass.get_datetime(end_time)
item_dtime = sdatetime
if time_interval % 1440 == 0:
item_dtime = sdatetime.replace(hour=0, minute=0, second=0) + \
timedelta(minutes=day_divided_hour * 60)
while item_dtime <= edatetime:
# print(item_dtime)
# if item_dtime.month == 12 and item_dtime.day == 31:
# print("debug")
sdt = item_dtime # start datetime of records
#.........這裏部分代碼省略.........