當前位置: 首頁>>代碼示例>>Python>>正文


Python Pipeline.addPipeline方法代碼示例

本文整理匯總了Python中pydpiper.pipeline.Pipeline.addPipeline方法的典型用法代碼示例。如果您正苦於以下問題:Python Pipeline.addPipeline方法的具體用法?Python Pipeline.addPipeline怎麽用?Python Pipeline.addPipeline使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pydpiper.pipeline.Pipeline的用法示例。


在下文中一共展示了Pipeline.addPipeline方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from pydpiper.pipeline import Pipeline [as 別名]
# 或者: from pydpiper.pipeline.Pipeline import addPipeline [as 別名]
class FullIterativeLSQ12Nlin:
    """Does a full iterative LSQ12 and NLIN. Basically iterative model building starting from LSQ6
       and without stats at the end. Designed to be called as part of a larger application. 
       Specifying an initModel is optional, all other arguments are mandatory."""
    def __init__(self, inputs, dirs, options, avgPrefix=None, initModel=None):
        self.inputs = inputs
        self.dirs = dirs
        self.options = options
        self.avgPrefix = avgPrefix
        self.initModel = initModel
        self.nlinFH = None
        
        self.p = Pipeline()
        
        self.buildPipeline()
        
    def buildPipeline(self):
        lsq12LikeFH = None 
        if self.initModel:
            lsq12LikeFH = self.initModel[0]
        elif self.options.lsq12_likeFile: 
            lsq12LikeFH = self.options.lsq12_likeFile 
        lsq12module = lsq12.FullLSQ12(self.inputs,
                                      self.dirs.lsq12Dir,
                                      likeFile=lsq12LikeFH,
                                      maxPairs=self.options.lsq12_max_pairs,
                                      lsq12_protocol=self.options.lsq12_protocol,
                                      subject_matter=self.options.lsq12_subject_matter)
        lsq12module.iterate()
        self.p.addPipeline(lsq12module.p)
        self.lsq12Params = lsq12module.lsq12Params
        if lsq12module.lsq12AvgFH.getMask()== None:
            if self.initModel:
                lsq12module.lsq12AvgFH.setMask(self.initModel[0].getMask())
        if not self.avgPrefix:
            self.avgPrefix = self.options.pipeline_name
        nlinModule = nlin.initializeAndRunNLIN(self.dirs.lsq12Dir,
                                               self.inputs,
                                               self.dirs.nlinDir,
                                               avgPrefix=self.avgPrefix, 
                                               createAvg=False,
                                               targetAvg=lsq12module.lsq12AvgFH,
                                               nlin_protocol=self.options.nlin_protocol,
                                               reg_method=self.options.reg_method)
        self.p.addPipeline(nlinModule.p)
        self.nlinFH = nlinModule.nlinAverages[-1]
        self.nlinParams = nlinModule.nlinParams
        self.initialTarget = nlinModule.initialTarget
        # Now we need the full transform to go back to LSQ6 space
        for i in self.inputs:
            linXfm = lsq12module.lsq12AvgXfms[i]
            nlinXfm = i.getLastXfm(self.nlinFH)
            outXfm = st.createOutputFileName(i, nlinXfm, "transforms", "_with_additional.xfm")
            xc = ma.xfmConcat([linXfm, nlinXfm], outXfm, fh.logFromFile(i.logDir, outXfm))
            self.p.addStage(xc)
            i.addAndSetXfmToUse(self.nlinFH, outXfm)
開發者ID:bcdarwin,項目名稱:pydpiper,代碼行數:58,代碼來源:minc_modules.py

示例2: __init__

# 需要導入模塊: from pydpiper.pipeline import Pipeline [as 別名]
# 或者: from pydpiper.pipeline.Pipeline import addPipeline [as 別名]
class HierarchicalMinctracc:
    """Default HierarchicalMinctracc currently does:
        1. 2 lsq12 stages with a blur of 0.25
        2. 5 nlin stages with a blur of 0.25
        3. 1 nlin stage with no blur"""
    def __init__(self, 
                 inputPipeFH, 
                 templatePipeFH,
                 steps=[1,0.5,0.5,0.2,0.2,0.1],
                 blurs=[0.25,0.25,0.25,0.25,0.25, -1], 
                 gradients=[False, False, True, False, True, False],
                 iterations=[60,60,60,10,10,4],
                 simplexes=[3,3,3,1.5,1.5,1],
                 w_translations=0.2,
                 linearparams = {'type' : "lsq12", 'simplex' : 1, 'step' : 1}, 
                 defaultDir="tmp"):
        
        self.p = Pipeline()
        
        for b in blurs:
            #MF TODO: -1 case is also handled in blur. Need here for addStage.
            #Fix this redundancy and/or better design?
            if b != -1:
                tblur = ma.blur(templatePipeFH, b, gradient=True)
                iblur = ma.blur(inputPipeFH, b, gradient=True)               
                self.p.addStage(tblur)
                self.p.addStage(iblur)
            
        # Do standard LSQ12 alignment prior to non-linear stages 
        lsq12reg = lsq12.LSQ12(inputPipeFH, 
                               templatePipeFH, 
                               defaultDir=defaultDir)
        self.p.addPipeline(lsq12reg.p)
        
        # create the nonlinear registrations
        for i in range(len(steps)):
            """For the final stage, make sure the output directory is transforms."""
            if i == (len(steps) - 1):
                defaultDir = "transforms"
            nlinStage = ma.minctracc(inputPipeFH, 
                                     templatePipeFH,
                                     defaultDir=defaultDir,
                                     blur=blurs[i],
                                     gradient=gradients[i],
                                     iterations=iterations[i],
                                     step=steps[i],
                                     similarity=0.8,
                                     w_translations=w_translations,
                                     simplex=simplexes[i])
            self.p.addStage(nlinStage)
開發者ID:sghanavati,項目名稱:pydpiper,代碼行數:52,代碼來源:hierarchical_minctracc.py

示例3: MAGeTRegister

# 需要導入模塊: from pydpiper.pipeline import Pipeline [as 別名]
# 或者: from pydpiper.pipeline.Pipeline import addPipeline [as 別名]
def MAGeTRegister(inputFH, 
                  templateFH, 
                  regMethod,
                  name="initial", 
                  createMask=False,
                  lsq12_protocol=None,
                  nlin_protocol=None):
    
    p = Pipeline()
    if createMask:
        defaultDir="tmp"
    else:
        defaultDir="transforms"
    if regMethod == "minctracc":
        sp = HierarchicalMinctracc(inputFH, 
                                   templateFH,
                                   lsq12_protocol=lsq12_protocol,
                                   nlin_protocol=nlin_protocol,
                                   defaultDir=defaultDir)
        p.addPipeline(sp.p)
    elif regMethod == "mincANTS":
        register = LSQ12ANTSNlin(inputFH, 
                                 templateFH, 
                                 lsq12_protocol=lsq12_protocol,
                                 nlin_protocol=nlin_protocol,
                                 defaultDir=defaultDir)
        p.addPipeline(register.p)
        
    rp = LabelAndFileResampling(inputFH, templateFH, name=name, createMask=createMask)
    p.addPipeline(rp.p)
    
    return(p)
開發者ID:bcdarwin,項目名稱:pydpiper,代碼行數:34,代碼來源:MAGeT_modules.py

示例4: MAGeTMask

# 需要導入模塊: from pydpiper.pipeline import Pipeline [as 別名]
# 或者: from pydpiper.pipeline.Pipeline import addPipeline [as 別名]
def MAGeTMask(atlases, inputs, numAtlases, regMethod, lsq12_protocol=None, nlin_protocol=None):
    """ Masking algorithm is as follows:
        1. Run HierarchicalMinctracc or mincANTS with mask=True, 
           using masks instead of labels. 
        2. Do voxel voting to find the best mask. (Or, if single atlas,
            use that transform)
        3. mincMath to multiply original input by mask to get _masked.mnc file
            (This is done for both atlases and inputs, though for atlases, voxel
             voting is not required.)
        4. Replace lastBasevol with masked version, since once we have created
            mask, we no longer care about unmasked version. 
        5. Clear out labels arrays, which were used to keep track of masks,
            as we want to re-set them for actual labels.
                
        Note: All data will be placed in a newly created masking directory
        to keep it separate from data generated during actual MAGeT. 
        """
    p = Pipeline()
    for atlasFH in atlases:
        maskDirectoryStructure(atlasFH, masking=True)
    for inputFH in inputs:
        maskDirectoryStructure(inputFH, masking=True)
        for atlasFH in atlases:
            sp = MAGeTRegister(inputFH, 
                               atlasFH, 
                               regMethod, 
                               name="initial", 
                               createMask=True,
                               lsq12_protocol=lsq12_protocol,
                               nlin_protocol=nlin_protocol)
            p.addPipeline(sp)          
    """ Prior to final masking, set log and tmp directories as they were."""
    for atlasFH in atlases:
        """Retrieve labels for use in new group. Assume only one"""
        labels = atlasFH.returnLabels(True)
        maskDirectoryStructure(atlasFH, masking=False)
        mp = maskFiles(atlasFH, True)
        p.addPipeline(mp)
        atlasFH.newGroup()
        atlasFH.addLabels(labels[0], inputLabel=True)
    for inputFH in inputs:
        maskDirectoryStructure(inputFH, masking=False)
        mp = maskFiles(inputFH, False, numAtlases)
        p.addPipeline(mp)
        # this will remove the "inputLabels"; labels that
        # come directly from the atlas library
        inputFH.clearLabels(True)
        # this will remove the "labels"; second generation
        # labels. I.e. labels from labels from the atlas library
        inputFH.clearLabels(False) 
        inputFH.newGroup()  
    return(p)    
開發者ID:edeguzman,項目名稱:pydpiper,代碼行數:54,代碼來源:MAGeT_modules.py

示例5: __init__

# 需要導入模塊: from pydpiper.pipeline import Pipeline [as 別名]
# 或者: from pydpiper.pipeline.Pipeline import addPipeline [as 別名]
class LSQ12ANTSNlin:
    """Class that runs a basic LSQ12 registration, followed by a single mincANTS call.
       Currently used in MAGeT, registration_chain and pairwise_nlin."""
    def __init__(self,
                 inputFH,
                 targetFH,
                 lsq12_protocol=None,
                 nlin_protocol=None,
                 subject_matter=None,
                 defaultDir="tmp"):
        
        self.p = Pipeline()
        self.inputFH = inputFH
        self.targetFH = targetFH
        self.lsq12_protocol = lsq12_protocol
        self.nlin_protocol = nlin_protocol
        self.subject_matter = subject_matter
        self.defaultDir = defaultDir
        
        if ((self.lsq12_protocol == None and self.subject_matter==None) or self.nlin_protocol == None):
            # always base the resolution to be used on the target for the registrations
            self.fileRes = rf.returnFinestResolution(self.targetFH)
        else:
            self.fileRes = None
        
        self.buildPipeline()    
    
    def buildPipeline(self):
        # Run lsq12 registration prior to non-linear
        self.lsq12Params = mp.setLSQ12MinctraccParams(self.fileRes, 
                                                      subject_matter=self.subject_matter,
                                                      reg_protocol=self.lsq12_protocol)
        lsq12reg = lsq12.LSQ12(self.inputFH, 
                               self.targetFH, 
                               blurs=self.lsq12Params.blurs,
                               step=self.lsq12Params.stepSize,
                               gradient=self.lsq12Params.useGradient,
                               simplex=self.lsq12Params.simplex,
                               w_translations=self.lsq12Params.w_translations,
                               defaultDir=self.defaultDir)
        self.p.addPipeline(lsq12reg.p)
        
        #Resample using final LSQ12 transform and reset last base volume. 
        res = ma.mincresample(self.inputFH, self.targetFH, likeFile=self.targetFH, argArray=["-sinc"])   
        self.p.addStage(res)
        self.inputFH.setLastBasevol(res.outputFiles[0])
        lsq12xfm = self.inputFH.getLastXfm(self.targetFH)
        
        #Get registration parameters from nlin protocol, blur and register
        #Assume a SINGLE generation here. 
        self.nlinParams = mp.setOneGenMincANTSParams(self.fileRes, reg_protocol=self.nlin_protocol)
        for b in self.nlinParams.blurs:
            for j in b:
                #Note that blurs for ANTS params in an array of arrays. 
                if j != -1:            
                    self.p.addStage(ma.blur(self.targetFH, j, gradient=True))
                    self.p.addStage(ma.blur(self.inputFH, j, gradient=True))
                    
        sp = ma.mincANTS(self.inputFH,
                         self.targetFH,
                         defaultDir=self.defaultDir, 
                         blur=self.nlinParams.blurs[0],
                         gradient=self.nlinParams.gradient[0],
                         similarity_metric=self.nlinParams.similarityMetric[0],
                         weight=self.nlinParams.weight[0],
                         iterations=self.nlinParams.iterations[0],
                         radius_or_histo=self.nlinParams.radiusHisto[0],
                         transformation_model=self.nlinParams.transformationModel[0], 
                         regularization=self.nlinParams.regularization[0],
                         useMask=self.nlinParams.useMask[0])
        self.p.addStage(sp)
        nlinXfm = sp.outputFiles[0]
        #Reset last base volume to original input for future registrations.
        self.inputFH.setLastBasevol(setToOriginalInput=True)
        #Concatenate transforms to get final lsq12 + nlin. Register volume handles naming and setting of lastXfm
        output = self.inputFH.registerVolume(self.targetFH, "transforms")
        xc = ma.xfmConcat([lsq12xfm, nlinXfm], output, fh.logFromFile(self.inputFH.logDir, output))
        self.p.addStage(xc)
開發者ID:edeguzman,項目名稱:pydpiper,代碼行數:80,代碼來源:minc_modules.py

示例6: stats

# 需要導入模塊: from pydpiper.pipeline import Pipeline [as 別名]
# 或者: from pydpiper.pipeline.Pipeline import addPipeline [as 別名]
class LongitudinalStatsConcatAndResample:
    """ For each subject:
        1. Calculate stats (displacement, absolute jacobians, relative jacobians) between i and i+1 time points 
        2. Calculate transform from subject to common space (nlinFH) and invert it. 
           For most subjects this will require some amount of transform concatenation. 
        3. Calculate the stats (displacement, absolute jacobians, relative jacobians) from common space
           to each timepoint.
    """
    def __init__(self, subjects, timePoint, nlinFH, statsKernels, commonName):
        
        self.subjects = subjects
        self.timePoint = timePoint
        self.nlinFH = nlinFH
        self.blurs = [] 
        self.setupBlurs(statsKernels)
        self.commonName = commonName
        
        self.p = Pipeline()
        
        self.buildPipeline()
    
    def setupBlurs(self, statsKernels):
        if isinstance(statsKernels, list):
            self.blurs = statsKernels
        elif isinstance(statsKernels, str):
            for i in statsKernels.split(","):
                self.blurs.append(float(i))
        else:
            print("Improper type of blurring kernels specified for stats calculation: " + str(statsKernels))
            sys.exit()
    
    def statsCalculation(self, inputFH, targetFH, xfm=None, useChainStats=True):
        """If useChainStats=True, calculate stats between input and target. 
           This happens for all i to i+1 calcs.
           
           If useChainStats=False, calculate stats in the standard way, from target to
           input, We do this, when we go from the common space to all others. """
        if useChainStats:
            stats = st.CalcChainStats(inputFH, targetFH, self.blurs)
        else:
            stats = st.CalcStats(inputFH, targetFH, self.blurs)
        self.p.addPipeline(stats.p)
        """If an xfm is specified, resample all to this common space"""
        if xfm:
            if not self.nlinFH:
                likeFH = targetFH
            else:
                likeFH = self.nlinFH
            res = resampleToCommon(xfm, inputFH, stats.statsGroup, self.blurs, likeFH)
            self.p.addPipeline(res)
    
    def statsAndConcat(self, s, i, count, beforeAvg=True):
        """Construct array to common space for this timepoint.
           This builds upon arrays from previous calls."""
        if beforeAvg:
            xfm = s[i].getLastXfm(s[i+1]) 
        else:
            xfm = s[i].getLastXfm(s[i-1])
        """Set this transform as last xfm from input to nlin and calculate nlin to s[i] stats"""
        if self.nlinFH:
            self.xfmToCommon.insert(0, xfm)
            """ Concat transforms to get xfmToCommon and calculate statistics 
                Note that inverted transform, which is what we want, is calculated in
                the statistics module. """
            xtc = createBaseName(s[i].transformsDir, s[i].basename + "_to_" + self.commonName + ".xfm")
            xc = ma.xfmConcat(self.xfmToCommon, xtc, fh.logFromFile(s[i].logDir, xtc))
            self.p.addStage(xc)
            # here in order to visually inspect the alignment with the common
            # time point, we should resample this subject:
            inputResampledToCommon = createBaseName(s[i].resampledDir, s[i].basename + "_to_" + self.commonName + ".mnc") 
            logToCommon = fh.logFromFile(s[i].logDir, inputResampledToCommon)
            resampleCmd = ma.mincresample(s[i],
                                          self.nlinFH,
                                          likeFile=self.nlinFH,
                                          transform=xtc,
                                          output=inputResampledToCommon,
                                          logFile=logToCommon,
                                          argArray=["-sinc"])
            self.p.addStage(resampleCmd)
            s[i].addAndSetXfmToUse(self.nlinFH, xtc)
            self.statsCalculation(s[i], self.nlinFH, xfm=None, useChainStats=False)
        else:
            xtc=None
        """Calculate i to i+1 stats for all but final timePoint"""
        if count - i > 1:
            self.statsCalculation(s[i], s[i+1], xfm=xtc, useChainStats=True)
        
    def buildPipeline(self):
        for subj in self.subjects:
            s = self.subjects[subj]
            count = len(s)
            """Wherever iterative model building was run, the indiv --> nlin xfm is stored
               in the group with the name "final". We need to use this group for to get the
               transform and do the stats calculation, and then reset to the current group.
               Calculate stats first from average to timepoint included in average"""

            if self.timePoint == -1:
                # This means that we used the last file for each of the subjects
                # to create the common average. This will be a variable time 
                # point, so we have to determine it for each of the input files
#.........這裏部分代碼省略.........
開發者ID:edeguzman,項目名稱:pydpiper,代碼行數:103,代碼來源:minc_modules.py

示例7: initializeAndRunNLIN

# 需要導入模塊: from pydpiper.pipeline import Pipeline [as 別名]
# 或者: from pydpiper.pipeline.Pipeline import addPipeline [as 別名]
class initializeAndRunNLIN(object):
    """Class to setup target average (if needed), 
       instantiate correct version of NLIN class,
       and run NLIN registration."""
    def __init__(self, 
                  targetOutputDir, #Output directory for files related to initial target (often _lsq12)
                  inputFiles, 
                  nlinDir, 
                  avgPrefix, #Prefix for nlin-1.mnc, ... nlin-k.mnc 
                  createAvg=True, #True=call mincAvg, False=targetAvg already exists
                  targetAvg=None, #Optional path to initial target - passing name does not guarantee existence
                  targetMask=None, #Optional path to mask for initial target
                  nlin_protocol=None,
                  reg_method=None):
        self.p = Pipeline()
        self.targetOutputDir = targetOutputDir
        self.inputFiles = inputFiles
        self.nlinDir = nlinDir
        self.avgPrefix = avgPrefix
        self.createAvg = createAvg
        self.targetAvg = targetAvg
        self.targetMask = targetMask
        self.nlin_protocol = nlin_protocol
        self.reg_method = reg_method
        
        # setup initialTarget (if needed) and initialize non-linear module
        self.setupTarget()
        self.initNlinModule()
        
        #iterate through non-linear registration and setup averages
        self.nlinModule.iterate()
        self.p.addPipeline(self.nlinModule.p)
        self.nlinAverages = self.nlinModule.nlinAverages
        self.nlinParams = self.nlinModule.nlinParams
        
    def setupTarget(self):
        if self.targetAvg:
            if isinstance(self.targetAvg, str): 
                self.initialTarget = RegistrationPipeFH(self.targetAvg, 
                                                        mask=self.targetMask, 
                                                        basedir=self.targetOutputDir)
                self.outputAvg = self.targetAvg
            elif isinstance(self.targetAvg, RegistrationPipeFH):
                self.initialTarget = self.targetAvg
                self.outputAvg = self.targetAvg.getLastBasevol()
                if not self.initialTarget.getMask():
                    if self.targetMask:
                        self.initialTarget.setMask(self.targetMask)
            else:
                print "You have passed a target average that is neither a string nor a file handler: " + str(self.targetAvg)
                print "Exiting..."
        else:
            self.targetAvg = abspath(self.targetOutputDir) + "/" + "initial-target.mnc" 
            self.initialTarget = RegistrationPipeFH(self.targetAvg, 
                                                    mask=self.targetMask, 
                                                    basedir=self.targetOutputDir)
            self.outputAvg = self.targetAvg
        if self.createAvg:
            avg = mincAverage(self.inputFiles, 
                              self.initialTarget, 
                              output=self.outputAvg,
                              defaultDir=self.targetOutputDir)
            self.p.addStage(avg)
            
    def initNlinModule(self):
        if self.reg_method=="mincANTS":
            self.nlinModule = NLINANTS(self.inputFiles, self.initialTarget, self.nlinDir, self.avgPrefix, self.nlin_protocol)
        elif self.reg_method=="minctracc":
            self.nlinModule = NLINminctracc(self.inputFiles, self.initialTarget, self.nlinDir, self.avgPrefix, self.nlin_protocol)
        else:
            logger.error("Incorrect registration method specified: " + self.reg_method)
            sys.exit()
開發者ID:bcdarwin,項目名稱:pydpiper,代碼行數:74,代碼來源:NLIN.py

示例8: FullLSQ12

# 需要導入模塊: from pydpiper.pipeline import Pipeline [as 別名]
# 或者: from pydpiper.pipeline.Pipeline import addPipeline [as 別名]

#.........這裏部分代碼省略.........
        self.simplex = []

        """Parse through rows and assign appropriate values to each parameter array.
           Everything is read in as strings, but in some cases, must be converted to 
           floats, booleans or gradients. 
        """
        for p in params:
            if p[0]=="blur":
                """Blurs must be converted to floats."""
                for i in range(1,len(p)):
                    self.blurs.append(float(p[i]))
            elif p[0]=="step":
                """Steps are strings but must be converted to a float."""
                for i in range(1,len(p)):
                    self.stepSize.append(float(p[i]))
            elif p[0]=="gradient":
                """Gradients must be converted to bools."""
                for i in range(1,len(p)):
                    if p[i]=="True" or p[i]=="TRUE":
                        self.useGradient.append(True)  
                    elif p[i]=="False" or p[i]=="FALSE":
                        self.useGradient.append(False) 
            elif p[0]=="simplex":
                """Simplex must be converted to an int."""
                for i in range(1,len(p)):
                    self.simplex.append(int(p[i]))
            else:
                print "Improper parameter specified for minctracc protocol: " + str(p[0])
                print "Exiting..."
                sys.exit()
        
    def getGenerations(self):
        arrayLength = len(self.blurs)
        errorMsg = "Array lengths in lsq12 minctracc protocol do not match."
        if (len(self.stepSize) != arrayLength 
            or len(self.useGradient) != arrayLength
            or len(self.simplex) != arrayLength):
            print errorMsg
            raise
        else:
            return arrayLength 
        
    def iterate(self):
        if not self.maxPairs:
            xfmsToAvg = {}
            lsq12ResampledFiles = {}
            for inputFH in self.inputs:
                """Create an array of xfms, to compute an average lsq12 xfm for each input"""
                xfmsToAvg[inputFH] = []
                for targetFH in self.inputs:
                    if inputFH != targetFH:
                        lsq12 = LSQ12(inputFH,
                                      targetFH,
                                      self.blurs,
                                      self.stepSize,
                                      self.useGradient,
                                      self.simplex)
                        self.p.addPipeline(lsq12.p)
                        xfmsToAvg[inputFH].append(inputFH.getLastXfm(targetFH))
                
                """Create average xfm for inputFH using xfmsToAvg array"""
                cmd = ["xfmavg"]
                for i in range(len(xfmsToAvg[inputFH])):
                    cmd.append(InputFile(xfmsToAvg[inputFH][i]))
                avgXfmOutput = createBaseName(inputFH.transformsDir, inputFH.basename + "-avg-lsq12.xfm")
                cmd.append(OutputFile(avgXfmOutput))
                xfmavg = CmdStage(cmd)
                xfmavg.setLogFile(LogFile(logFromFile(inputFH.logDir, avgXfmOutput)))
                self.p.addStage(xfmavg)
                self.lsq12AvgXfms[inputFH] = avgXfmOutput
                """ resample brain and add to array for mincAveraging"""
                if not self.likeFile:
                    likeFile=inputFH
                else:
                    likeFile=self.likeFile
                rslOutput = createBaseName(inputFH.resampledDir, inputFH.basename + "-resampled-lsq12.mnc")
                res = ma.mincresample(inputFH, 
                                      inputFH,
                                      transform=avgXfmOutput, 
                                      likeFile=likeFile, 
                                      output=rslOutput,
                                      argArray=["-sinc"])   
                self.p.addStage(res)
                lsq12ResampledFiles[inputFH] = rslOutput
            """ After all registrations complete, setLastBasevol for each subject to be
                resampled file in lsq12 space. We can then call mincAverage on fileHandlers,
                as it will use the lastBasevol for each by default."""
            for inputFH in self.inputs:
                inputFH.setLastBasevol(lsq12ResampledFiles[inputFH])
            """ mincAverage all resampled brains and put in lsq12Directory""" 
            self.lsq12Avg = abspath(self.lsq12Dir) + "/" + basename(self.lsq12Dir) + "-pairs.mnc" 
            self.lsq12AvgFH = RegistrationPipeFH(self.lsq12Avg, basedir=self.lsq12Dir)
            avg = ma.mincAverage(self.inputs, 
                                 self.lsq12AvgFH, 
                                 output=self.lsq12Avg,
                                 defaultDir=self.lsq12Dir)
            self.p.addStage(avg)
        else:
            print "Registration using a specified number of max pairs not yet working. Check back soon!"
            sys.exit()
開發者ID:sghanavati,項目名稱:pydpiper,代碼行數:104,代碼來源:LSQ12.py


注:本文中的pydpiper.pipeline.Pipeline.addPipeline方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。