當前位置: 首頁>>代碼示例>>Python>>正文


Python customxml.NetworkWriter類代碼示例

本文整理匯總了Python中pybrain.tools.customxml.NetworkWriter的典型用法代碼示例。如果您正苦於以下問題:Python NetworkWriter類的具體用法?Python NetworkWriter怎麽用?Python NetworkWriter使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了NetworkWriter類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

def main():
    start_time = time.time()
    novice = ArtificialNovice()
    genius = ArtificialGenius()
    game = HangmanGame(genius, novice)

    if __debug__:
        print "------------------- EVALUATION ------------------------"
        network = NetworkReader.readFrom("../IA/network_weight_1000.xml")
        j = 0
        while j < 1:
            game.launch(False, None, network)
            j += 1

        print ("--- %s total seconds ---" % (time.time() - start_time))
    else:
        print "------------------- LEARNING ------------------------"
        network = buildNetwork(3, 4, 1, hiddenclass=SigmoidLayer)
        ds = SupervisedDataSet(3, 1)
        i = 0
        while i < 100:
            game.launch(True, ds)
            i += 1

        print " INITIATE trainer : "
        trainer = BackpropTrainer(network, ds)
        print " START trainer : "
        start_time_trainer = time.time()
        trainer.train()
        print ("---  END trainer in % seconds ---" % (time.time() - start_time_trainer))
        print " START EXPORT network : "
        NetworkWriter.writeToFile(network, "../IA/network_weight_test_learning.xml")
        print " END EXPORT network : "
開發者ID:CelyaRousseau,項目名稱:NaoHangman,代碼行數:33,代碼來源:main.py

示例2: run

def run(epochs, network_file, file_length, part_length, dominant_frequncies, show_graph, verbose_output):
	start_time = time.time()
	learner = dominant_freqs_learner.DominantFreqsLearner(file_length, part_length ,dominant_frequncies)
	all_files = get_all_split_files()
	if verbose_output:
		print 'started adding files to dataset at ' + time.ctime()

	for f in all_files:
		try:
			learner.add_split_file(f, channel=None, verbose=verbose_output)
		except:
			pass

	dataset_add_time = time.time() - start_time
	if verbose_output:
		print 'finished adding file to dataset at ' + time.ctime()

	errors = []
	learning_start_time = time.time()
	for epoch in range(epochs):
		error = learner.train_single_epoch()
		if verbose_output:
			print '{0}: epoch {1} : {2}'.format(time.ctime(), epoch, error)

		errors.append(error)

	learning_time = time.time() - learning_start_time
	NetworkWriter.writeToFile(learner._net, network_file)
	if show_graph:
		plot_graph(errors)

	return (errors, dataset_add_time, learning_time)
開發者ID:agadish,項目名稱:HotC,代碼行數:32,代碼來源:dominant_freqs_runner.py

示例3: save_network

    def save_network(self,name_of_the_net):
        print "Saving the trained network to file"

        if self.network is None:
            print "Network has not been trained!!"
        else:
            NetworkWriter.writeToFile(self.network, name_of_the_net)
            print "Saving Finished"
開發者ID:DajeRoma,項目名稱:clicc-flask,代碼行數:8,代碼來源:regression.py

示例4: train

 def train(self):
     print "Training"
     trndata, tstdata = self.ds.splitWithProportion(.1)
     self.trainer.trainUntilConvergence(verbose=True,
                                        trainingData=trndata,
                                        maxEpochs=1000)
     self.trainer.testOnData(tstdata, verbose= True)
     # if raw_input('Save Network?: y/n\n')=='y':
     NetworkWriter.writeToFile(self.net, 'Network1.xml')
     print 'Saving network'
開發者ID:nahtonaj,項目名稱:neuralnetworkdrone,代碼行數:10,代碼來源:imageProcessing.py

示例5: main

def main():
    print "Calculating mfcc...."
    mfcc_coeff_vectors_dict = {}
    for i in range(1, 201):
        extractor = FeatureExtractor(
            '/home/venkatesh/Venki/FINAL_SEM/Project/Datasets/Happiness/HappinessAudios/' + str(i) + '.wav')
        mfcc_coeff_vectors = extractor.calculate_mfcc()
        mfcc_coeff_vectors_dict.update({str(i): (mfcc_coeff_vectors, mfcc_coeff_vectors.shape[0])})

    for i in range(201, 401):
        extractor = FeatureExtractor(
            '/home/venkatesh/Venki/FINAL_SEM/Project/Datasets/Sadness/SadnessAudios/' + str(i - 200) + '.wav')
        mfcc_coeff_vectors = extractor.calculate_mfcc()
        mfcc_coeff_vectors_dict.update({str(i): (mfcc_coeff_vectors, mfcc_coeff_vectors.shape[0])})

    audio_with_min_frames, min_frames = get_min_frames_audio(
        mfcc_coeff_vectors_dict)
    processed_mfcc_coeff = preprocess_input_vectors(
        mfcc_coeff_vectors_dict, min_frames)
    # frames = min_frames
    # print frames
    # print len(processed_mfcc_coeff['1'])
    # for each_vector in processed_mfcc_coeff['1']:
    #     print len(each_vector)
    print "mffcc found..."
    classes = ["happiness", "sadness"]

    training_data = ClassificationDataSet(
        26, target=1, nb_classes=2, class_labels=classes)
    # training_data = SupervisedDataSet(13, 1)
    try:
        network = NetworkReader.readFrom(
            'network_state_frame_level_new2_no_pp1.xml')
    except:
        for i in range(1, 51):
            mfcc_coeff_vectors = processed_mfcc_coeff[str(i)]
            for each_vector in mfcc_coeff_vectors:
                training_data.appendLinked(each_vector, [1])

        for i in range(201, 251):
            mfcc_coeff_vectors = processed_mfcc_coeff[str(i)]
            for each_vector in mfcc_coeff_vectors:
                training_data.appendLinked(each_vector, [0])

        training_data._convertToOneOfMany()
        print "prepared training data.."
        print training_data.indim, training_data.outdim
        network = buildNetwork(
            training_data.indim, 5, training_data.outdim, fast=True)
        trainer = BackpropTrainer(network, learningrate=0.01, momentum=0.99)
        print "Before training...", trainer.testOnData(training_data)
        trainer.trainOnDataset(training_data, 1000)
        print "After training...", trainer.testOnData(training_data)
        NetworkWriter.writeToFile(
            network, "network_state_frame_level_new2_no_pp.xml")
開發者ID:abhinavkashyap92,項目名稱:sentitude,代碼行數:55,代碼來源:pybrain_frame_level_classifier.py

示例6: save_network

 def save_network(self,name_of_the_net):
     print "Saving the trained network to file"
     
     if self.network is None:
         print "Network has not been trained!!"
     else:
         NetworkWriter.writeToFile(self.network, name_of_the_net)
         fileName = name_of_the_net.replace('.xml','')
         fileName = fileName+'_testIndex.txt'
         np.savetxt(fileName,self.tstIndex)
         print "Saving Finished"
開發者ID:RunshengSong,項目名稱:CLiCC_Packages,代碼行數:11,代碼來源:regression.py

示例7: nn_train

def nn_train(pvar,ovar,code,date1,date2,niter,np,nh):
    
    
    print "Doing Networ "+pvar+" "+ovar+" "+date1+" "+date2+" "+str(iter)
    

    # -----------------------    add samples   ------------------
    # get the training data
    print "adding training data "+pvar+" "
    file="eod_main.db"
    sqldir = os.path.join(datadir,"sql")
    sqlfile = os.path.join(sqldir,file)

    conn,cur=open_sql(sqlfile)
    d = rd_sql(cur,code,'AND date > "'+date1+'" AND date < "'+date2+'"')
    print "Read no of days "+str(len(d))

    if pvar == "basic8":
        print "calling nn_pp_basic8"
        pp = nn_pp_basic8(d,3,3)
    oclose,ohigh,olow,oclose_disc,o3day=nn_po_basic(d,3,3)
    if ovar == "close":
        po=oclose
    if ovar == "high":
        po=ohigh
    if ovar == "3day":
        po=o3day

    
    ds = SupervisedDataSet(np,1)
    for i in range(0,len(po)):
        ds.addSample(pp[i],po[i])

    # -----------------------    Build and Train   ------------------
    print "Training Network"
    net = buildNetwork(np,nh,1,hiddenclass=TanhLayer)
    trainer = BackpropTrainer(net,ds)
    xxx = trainer.trainUntilConvergence(maxEpochs=niter,validationProportion=0.01)
    #for n in range(0,niter):
    #    xxx=trainer.train(validationProportion=0.0)
    #    if n % 100 ==0:
    #        print "{} : {}".format(n,xxx)

        
    # --------------     Save network parameters   ------------------
    print "Saving Network"
    netdir2 = os.path.join(basedir,"inv")
    netdir = os.path.join(netdir2,"analyse")
    netfile = os.path.join(netdir,'net_'+pvar+'_'+ovar+'_'+date1+'_'+date1+'_'+str(niter)+'.xml')
    NetworkWriter.writeToFile(net, netfile)
    
    return
開發者ID:kizombakid,項目名稱:inv,代碼行數:52,代碼來源:nn_train.py

示例8: neuralNet

def neuralNet(info, test_data):
    ann = FeedForwardNetwork()
    
    ''' 
        Initiate the input nodes, hidden layer nodes,
        and the output layer nodes.
    '''
    inputLayer = LinearLayer(5)
    hiddenLayer = SigmoidLayer(20) 
    outputLayer = LinearLayer(1)
    
    '''
        Add the nodes to the corresponding layer
    '''
    ann.addInputModule(inputLayer)
    ann.addModule(hiddenLayer)
    ann.addOutputModule(outputLayer)
    
    '''
        Connect the input layer to hidden layer,
        then connect hidden layer to output layer
    '''
    in_to_hidden = FullConnection(inputLayer, hiddenLayer)
    hidden_to_out = FullConnection(hiddenLayer, outputLayer)
    
    ann.addConnection(in_to_hidden)
    ann.addConnection(hidden_to_out)
    
    ann.sortModules ()
    
    data_set = SupervisedDataSet(5, 1)
    for data in info:
        data_set.addSample(data[:-1], data[-1])
    trainer = BackpropTrainer(ann, data_set, verbose=False)
    
    #test_data, train_data = data_set.splitWithProportion(0.2)
    train_data = data_set
    test_data = test_data
    '''
        Using 50 epochs for testing purposes, it will train
        the network until convergence within the first 50 epochs
    
    '''
    train = trainer.trainUntilConvergence(dataset=train_data, maxEpochs=10)
    NetworkWriter.writeToFile(ann, 'filename5.xml')
    
    for d in test_data:
        out = ann.activate(d)
        #print (train)
        print (out) 
        
    '''
開發者ID:TeamBall,項目名稱:CapstoneProject,代碼行數:52,代碼來源:neuralNetwork.py

示例9: main

def main():
    print "Calculating mfcc...."
    mfcc_coeff_vectors_dict = {}
    for i in range(1, 201):
        extractor = FeatureExtractor('/home/venkatesh/Venki/FINAL_SEM/Project/Datasets/Happiness/HappinessAudios/' + str(i) + '.wav')
        mfcc_coeff_vectors = extractor.calculate_mfcc()
        mfcc_coeff_vectors_dict.update({str(i): (mfcc_coeff_vectors, mfcc_coeff_vectors.shape[0])})

    for i in range(201, 401):
        extractor = FeatureExtractor('/home/venkatesh/Venki/FINAL_SEM/Project/Datasets/Sadness/SadnessAudios/' + str(i - 200) + '.wav')
        mfcc_coeff_vectors = extractor.calculate_mfcc()
        mfcc_coeff_vectors_dict.update({str(i): (mfcc_coeff_vectors, mfcc_coeff_vectors.shape[0])})

    audio_with_min_frames, min_frames = get_min_frames_audio(mfcc_coeff_vectors_dict)
    processed_mfcc_coeff = preprocess_input_vectors(mfcc_coeff_vectors_dict, min_frames)
    frames = min_frames
    print "mfcc found...."
    classes = ["happiness", "sadness"]
    try:
        network = NetworkReader.readFrom('network_state_new_.xml')
    except:
        # Create new network and start Training
        training_data = ClassificationDataSet(frames * 26, target=1, nb_classes=2, class_labels=classes)
        # training_data = SupervisedDataSet(frames * 39, 1)
        for i in range(1, 151):
            mfcc_coeff_vectors = processed_mfcc_coeff[str(i)]
            training_data.appendLinked(mfcc_coeff_vectors.ravel(), [1])
            # training_data.addSample(mfcc_coeff_vectors.ravel(), [1])

        for i in range(201, 351):
            mfcc_coeff_vectors = processed_mfcc_coeff[str(i)]
            training_data.appendLinked(mfcc_coeff_vectors.ravel(), [0])
            # training_data.addSample(mfcc_coeff_vectors.ravel(), [0])

        training_data._convertToOneOfMany()
        network = buildNetwork(training_data.indim, 5, training_data.outdim)
        trainer = BackpropTrainer(network, learningrate=0.01, momentum=0.99)
        print "Before training...", trainer.testOnData(training_data)
        trainer.trainOnDataset(training_data, 1000)
        print "After training...", trainer.testOnData(training_data)
        NetworkWriter.writeToFile(network, "network_state_new_.xml")

    print "*" * 30 , "Happiness Detection", "*" * 30
    for i in range(151, 201):
        output = network.activate(processed_mfcc_coeff[str(i)].ravel())
        # print output,
        # if output > 0.7:
        #     print "happiness"
        class_index = max(xrange(len(output)), key=output.__getitem__)
        class_name = classes[class_index]
        print class_name
開發者ID:abhinavkashyap92,項目名稱:sentitude,代碼行數:51,代碼來源:pybrain_learning.py

示例10: dump

    def dump(self, dirPath):
        """
        Save a representation of this classifier and it's network at the given path.
        """
        if os.path.isdir(dirPath) and os.listdir(dirPath):
            raise IOError("The directory exists and is not empty: {}".format(dirPath))
        util.mkdir_p(dirPath)

        #save network
        NetworkWriter.writeToFile(self.net, os.path.join(dirPath, self._NET_NAME))

        #save classifier
        with open(os.path.join(dirPath, self._CLASSIFIER_NAME), 'w') as f:
            f.write(serializer.dump(self))
開發者ID:ForeverWintr,項目名稱:ImageClassipy,代碼行數:14,代碼來源:classifier.py

示例11: save

 def save(self, filename):
     tmpfile = filename + '~net~'
     NetworkWriter.writeToFile(self.net, tmpfile)
     with open(tmpfile, 'rb') as f:
         network_data = f.read()
     os.unlink(tmpfile)
     with open(filename + '~', 'wb') as f:
         out = pickle.Pickler(f)
         out.dump( (const.PWINDOW, self.window) )
         out.dump( (const.PSIZE, self.size) )
         out.dump( (const.PRATIO, self.ratio) )
         out.dump( (const.PMULTIPLIER, self.multiplier) )
         out.dump( (const.PNETWORK, network_data) )
         f.flush()
     os.rename(filename + '~', filename)
開發者ID:majek,項目名稱:transfer,代碼行數:15,代碼來源:network.py

示例12: xmlInvariance

def xmlInvariance(n, forwardpasses = 1):
    """ try writing a network to an xml file, reading it, rewrite it, reread it, and compare
    if the result looks the same (compare string representation, and forward processing
    of some random inputs) """
    # We only use this for file creation.
    tmpfile = tempfile.NamedTemporaryFile(dir='.')
    f = tmpfile.name
    tmpfile.close()

    NetworkWriter.writeToFile(n, f)
    tmpnet = NetworkReader.readFrom(f)
    NetworkWriter.writeToFile(tmpnet, f)
    endnet = NetworkReader.readFrom(f)

    # Unlink temporary file.
    os.unlink(f)

    netCompare(tmpnet, endnet, forwardpasses, True)
開發者ID:Boblogic07,項目名稱:pybrain,代碼行數:18,代碼來源:helpers.py

示例13: neural_train

def neural_train(filename, testfile, output):
    tag, data = readfile(filename)
    testtag, testdata = readfile(testfile)
    net = buildNetwork(len(data[0]), 80, 10)
    ds = SupervisedDataSet(len(data[0]), 10)
    for x in range(0, len(data)):
        ds.addSample(data[x], trans(tag[x]))
    testds = SupervisedDataSet(len(data[0]), 10)
    for x in range(0, len(testdata)):
        testds.addSample(testdata[x], trans(testtag[x]))
    trainer = BackpropTrainer(net, ds, learningrate = 0.001, momentum = 0.99)
    print "training..."
    trainer.trainUntilConvergence(verbose=True,
                              trainingData=ds,
                              validationData=testds,
                              maxEpochs=500)
    print "done"
    NetworkWriter.writeToFile(net, output)
開發者ID:YueDayu,項目名稱:AdvancedDataStructureProj2,代碼行數:18,代碼來源:NN_training.py

示例14: main

def main():

	start_time = time.time()

	dataModel = [
	    [(0,0,0), (1,0,0,0,0,0,0,0)],
	    [(0,0,1), (0,1,0,0,0,0,0,0)],
	    [(0,1,0), (0,0,1,0,0,0,0,0)],
	    [(0,1,1), (0,0,0,1,0,0,0,0)],
	    [(1,0,0), (0,0,0,0,1,0,0,0)],
	    [(1,0,1), (0,0,0,0,0,1,0,0)],
	    [(1,1,0), (0,0,0,0,0,0,1,0)],
	    [(1,1,1), (0,0,0,0,0,0,0,1)],
	]

	ds = SupervisedDataSet(3, 8)
	 
	for input, target in dataModel:
	    ds.addSample(input, target)

	# create a large random data set
	random.seed()
	trainingSet = SupervisedDataSet(3, 8);
	for ri in range(0,2000):
	    input,target = dataModel[random.getrandbits(3)];
	    trainingSet.addSample(input, target)

	net = buildNetwork(3, 8, 8, bias=True)

	trainer = BackpropTrainer(net, ds, learningrate = 0.001)
	for i in range(10):

		trainer.trainUntilConvergence(verbose=True,
		                              trainingData=trainingSet,
		                              validationData=ds,
		                              maxEpochs=1)

		NetworkWriter.writeToFile(net, 'savedNeuralNets/trainedNet'+str(i)+'.xml')

	print("The Program took %s seconds to run" % (time.time() - start_time))
開發者ID:nasgold,項目名稱:rounder,代碼行數:40,代碼來源:exampleNeuralNetwork.py

示例15: trainNetwork

def trainNetwork(dirname):
    numFeatures = 5000
    ds = SequentialDataSet(numFeatures, 1)
    
    tracks = glob.glob(os.path.join(dirname, 'train??.wav'))
    for t in tracks:
        track = os.path.splitext(t)[0]
        # load training data
        print "Reading %s..." % track
        data = numpy.genfromtxt(track + '_seg.csv', delimiter=",")
        labels = numpy.genfromtxt(track + 'REF.txt', delimiter='\t')[0::10,1]
        numData = data.shape[0]

        # add the input to the dataset
        print "Adding to dataset..."
        ds.newSequence()
        for i in range(numData):
            ds.addSample(data[i], (labels[i],))
    
    # initialize the neural network
    print "Initializing neural network..."
    net = buildNetwork(numFeatures, 50, 1,
                       hiddenclass=LSTMLayer, outputbias=False, recurrent=True)
    
    # train the network on the dataset
    print "Training neural net"
    trainer = RPropMinusTrainer(net, dataset=ds)
##    trainer.trainUntilConvergence(maxEpochs=50, verbose=True, validationProportion=0.1)
    error = -1
    for i in range(100):
        new_error = trainer.train()
        print "error: " + str(new_error)
        if abs(error - new_error) < 0.1: break
        error = new_error

    # save the network
    print "Saving neural network..."
    NetworkWriter.writeToFile(net, os.path.basename(dirname) + 'net')
開發者ID:tediris,項目名稱:MusicML,代碼行數:38,代碼來源:trainer.py


注:本文中的pybrain.tools.customxml.NetworkWriter類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。