當前位置: 首頁>>代碼示例>>Python>>正文


Python Experiment._oneInteraction方法代碼示例

本文整理匯總了Python中pybrain.rl.experiments.Experiment._oneInteraction方法的典型用法代碼示例。如果您正苦於以下問題:Python Experiment._oneInteraction方法的具體用法?Python Experiment._oneInteraction怎麽用?Python Experiment._oneInteraction使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pybrain.rl.experiments.Experiment的用法示例。


在下文中一共展示了Experiment._oneInteraction方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: BoxSearchRunner

# 需要導入模塊: from pybrain.rl.experiments import Experiment [as 別名]
# 或者: from pybrain.rl.experiments.Experiment import _oneInteraction [as 別名]
class BoxSearchRunner():

  def __init__(self, mode):
    self.mode = mode
    cu.mem('Reinforcement Learning Started')
    self.environment = BoxSearchEnvironment(config.get(mode+'Database'), mode, config.get(mode+'GroundTruth'))
    self.controller = QNetwork()
    cu.mem('QNetwork controller created')
    self.learner = None
    self.agent = BoxSearchAgent(self.controller, self.learner)
    self.task = BoxSearchTask(self.environment, config.get(mode+'GroundTruth'))
    self.experiment = Experiment(self.task, self.agent)

  def runEpoch(self, interactions, maxImgs):
    img = 0
    s = cu.tic()
    while img < maxImgs:
      k = 0
      while not self.environment.episodeDone and k < interactions:
        self.experiment._oneInteraction()
        k += 1
      self.agent.learn()
      self.agent.reset()
      self.environment.loadNextEpisode()
      img += 1
    s = cu.toc('Run epoch with ' + str(maxImgs) + ' episodes', s)

  def run(self):
    if self.mode == 'train':
      self.agent.persistMemory = True
      self.agent.startReplayMemory(len(self.environment.imageList), config.geti('trainInteractions'))
      self.train()
    elif self.mode == 'test':
      self.agent.persistMemory = False
      self.test()

  def train(self):
    networkFile = config.get('networkDir') + config.get('snapshotPrefix') + '_iter_' + config.get('trainingIterationsPerBatch') + '.caffemodel'
    interactions = config.geti('trainInteractions')
    minEpsilon = config.getf('minTrainingEpsilon')
    epochSize = len(self.environment.imageList)/1
    epsilon = 1.0
    self.controller.setEpsilonGreedy(epsilon, self.environment.sampleAction)
    epoch = 1
    exEpochs = config.geti('explorationEpochs')
    while epoch <= exEpochs:
      s = cu.tic()
      print 'Epoch',epoch,': Exploration (epsilon=1.0)'
      self.runEpoch(interactions, len(self.environment.imageList))
      self.task.flushStats()
      self.doValidation(epoch)
      s = cu.toc('Epoch done in ',s)
      epoch += 1
    self.learner = QLearning()
    self.agent.learner = self.learner
    egEpochs = config.geti('epsilonGreedyEpochs')
    while epoch <= egEpochs + exEpochs:
      s = cu.tic()
      epsilon = epsilon - (1.0-minEpsilon)/float(egEpochs)
      if epsilon < minEpsilon: epsilon = minEpsilon
      self.controller.setEpsilonGreedy(epsilon, self.environment.sampleAction)
      print 'Epoch',epoch ,'(epsilon-greedy:{:5.3f})'.format(epsilon)
      self.runEpoch(interactions, epochSize)
      self.task.flushStats()
      self.doValidation(epoch)
      s = cu.toc('Epoch done in ',s)
      epoch += 1
    maxEpochs = config.geti('exploitLearningEpochs') + exEpochs + egEpochs
    while epoch <= maxEpochs:
      s = cu.tic()
      print 'Epoch',epoch,'(exploitation mode: epsilon={:5.3f})'.format(epsilon)
      self.runEpoch(interactions, epochSize)
      self.task.flushStats()
      self.doValidation(epoch)
      s = cu.toc('Epoch done in ',s)
      shutil.copy(networkFile, networkFile + '.' + str(epoch))
      epoch += 1

  def test(self):
    interactions = config.geti('testInteractions')
    self.controller.setEpsilonGreedy(config.getf('testEpsilon'))
    self.runEpoch(interactions, len(self.environment.imageList))

  def doValidation(self, epoch):
    if epoch % config.geti('validationEpochs') != 0:
      return
    auxRL = BoxSearchRunner('test')
    auxRL.run()
    indexType = config.get('evaluationIndexType')
    category = config.get('category')
    if indexType == 'pascal':
      categories, catIndex = bse.get20Categories()
    elif indexType == 'relations':
      categories, catIndex = bse.getCategories()
    elif indexType == 'finetunedRelations':
      categories, catIndex = bse.getRelationCategories()
    if category in categories:
        catI = categories.index(category)
    else:
        catI = -1
#.........這裏部分代碼省略.........
開發者ID:jccaicedo,項目名稱:localization-agent,代碼行數:103,代碼來源:TrackerRunner.py


注:本文中的pybrain.rl.experiments.Experiment._oneInteraction方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。