本文整理匯總了Python中pyasdf.ASDFDataSet.process方法的典型用法代碼示例。如果您正苦於以下問題:Python ASDFDataSet.process方法的具體用法?Python ASDFDataSet.process怎麽用?Python ASDFDataSet.process使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pyasdf.ASDFDataSet
的用法示例。
在下文中一共展示了ASDFDataSet.process方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_processing_multiprocessing
# 需要導入模塊: from pyasdf import ASDFDataSet [as 別名]
# 或者: from pyasdf.ASDFDataSet import process [as 別名]
def test_processing_multiprocessing(example_data_set):
"""
Tests the processing using multiprocessing.
"""
def null_processing(st, inv):
return st
data_set = ASDFDataSet(example_data_set.filename)
output_filename = os.path.join(example_data_set.tmpdir, "output.h5")
# Do not actually do anything. Apply an empty function.
data_set.process(null_processing, output_filename,
{"raw_recording": "raw_recording"})
del data_set
data_set = ASDFDataSet(example_data_set.filename)
out_data_set = ASDFDataSet(output_filename)
assert data_set == out_data_set
示例2: gps2DistAzimuth
# 需要導入模塊: from pyasdf import ASDFDataSet [as 別名]
# 或者: from pyasdf.ASDFDataSet import process [as 別名]
st.taper(max_percentage=0.05, type="hann")
st.interpolate(sampling_rate=sampling_rate, starttime=starttime,
npts=npts)
station_latitude = inv[0][0].latitude
station_longitude = inv[0][0].longitude
_, baz, _ = gps2DistAzimuth(station_latitude, station_longitude,
event_latitude, event_longitude)
components = [tr.stats.channel[-1] for tr in st]
if "N" in components and "E" in components:
st.rotate(method="NE->RT", back_azimuth=baz)
# Convert to single precision to save space.
for tr in st:
tr.data = np.require(tr.data, dtype="float32")
return st
tag_name = "preprocessed_%is_to_%is" % (int(min_period), int(max_period))
tag_map = {
"raw_recording": tag_name
}
ds.process(process_function, tag_name + ".h5", tag_map=tag_map)
# Important when running with MPI as it might otherwise not be able to finish.
del ds
示例3: process_synt
# 需要導入模塊: from pyasdf import ASDFDataSet [as 別名]
# 或者: from pyasdf.ASDFDataSet import process [as 別名]
def process_synt(asdf_fn, outputfn, filter_band, old_tag=None, new_tag=None):
# read in dataset
ds = ASDFDataSet(asdf_fn)
max_period = filter_band[1]
min_period = filter_band[0]
if min_period > max_period:
raise ValueError("filter_band incorrect: min_period > max_period")
f2 = 1.0 / max_period
f3 = 1.0 / min_period
f1 = 0.8 * f2
f4 = 1.2 * f3
pre_filt = (f1, f2, f3, f4)
# read in event
event = ds.events[0]
origin = event.preferred_origin() or event.origins[0]
event_latitude = origin.latitude
event_longitude = origin.longitude
event_time = origin.time
# Figure out these parameters somehonw!
starttime = event_time
npts = 3600
sampling_rate = 1.0
def process_function(st, inv):
st.detrend("linear")
st.detrend("demean")
st.taper(max_percentage=0.05, type="hann")
# Perform a frequency domain taper like during the response removal
# just without an actual response...
for tr in st:
data = tr.data.astype(np.float64)
# smart calculation of nfft dodging large primes
from obspy.signal.util import _npts2nfft
nfft = _npts2nfft(len(data))
fy = 1.0 / (tr.stats.delta * 2.0)
freqs = np.linspace(0, fy, nfft // 2 + 1)
# Transform data to Frequency domain
data = np.fft.rfft(data, n=nfft)
data *= c_sac_taper(freqs, flimit=pre_filt)
data[-1] = abs(data[-1]) + 0.0j
# transform data back into the time domain
data = np.fft.irfft(data)[0:len(data)]
# assign processed data and store processing information
tr.data = data
st.detrend("linear")
st.detrend("demean")
st.taper(max_percentage=0.05, type="hann")
st.interpolate(sampling_rate=sampling_rate, starttime=starttime,
npts=npts)
components = [tr.stats.channel[-1] for tr in st]
if "N" in components and "E" in components:
station_latitude = float(inv[0][0].latitude)
station_longitude = float(inv[0][0].longitude)
_, baz, _ = gps2DistAzimuth(station_latitude, station_longitude,
event_latitude, event_longitude)
st.rotate(method="NE->RT", back_azimuth=baz)
# Convert to single precision to save space.
for tr in st:
tr.data = np.require(tr.data, dtype="float32")
return st
tag_map = {
old_tag : new_tag
}
# process
ds.process(process_function, outputfn, tag_map=tag_map)
示例4: float
# 需要導入模塊: from pyasdf import ASDFDataSet [as 別名]
# 或者: from pyasdf.ASDFDataSet import process [as 別名]
station_latitude = float(inv[0][0].latitude)
station_longitude = float(inv[0][0].longitude)
_, baz, _ = gps2DistAzimuth(station_latitude, station_longitude,
event_latitude, event_longitude)
components = [tr.stats.channel[-1] for tr in st]
if "N" in components and "E" in components:
st.rotate(method="NE->RT", back_azimuth=baz)
# Convert to single precision to save space.
for tr in st:
tr.data = np.require(tr.data, dtype="float32")
return st
new_tag = "proc_obsd_%i_%i" % (int(min_period), int(max_period))
tag_map = {
old_tag : new_tag
}
outputfn = eventname + "." + new_tag + ".h5"
outputfn = os.path.join(outputdir, outputfn)
if os.path.exists(outputfn):
os.remove(outputfn)
ds.process(process_function, outputfn, tag_map=tag_map)
t2=time.time()
print "Elapsed time:", t2-t1