當前位置: 首頁>>代碼示例>>Python>>正文


Python transitionparser.TransitionParser類代碼示例

本文整理匯總了Python中providedcode.transitionparser.TransitionParser的典型用法代碼示例。如果您正苦於以下問題:Python TransitionParser類的具體用法?Python TransitionParser怎麽用?Python TransitionParser使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了TransitionParser類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

def main():
    if len(sys.argv) < 4:
        print """
        Usage:

        python parse.py in.model > out.conll

        Input can be provided manually via the command prompt or piped directly
        to the script using cat.
        """
    # END if

    if sys.stdin.isatty():
        rawtext = [raw_input("Please type a sentence!")]
    else:
        rawtext = sys.stdin.read()
    # END if

    out_filename = sys.argv[3]
    model_filename = sys.argv[1]

    try:
        tp = TransitionParser.load(model_filename)
        parsed = tp.parse(rawtext)

        with open(out_filename, 'w') as f:
            for p in parsed:
                f.write(p.to_conll(10).encode('utf-8'))
                f.write('\n')
            # END for
        # END with
    except Exception:
        "Error."
開發者ID:suttonbm,項目名稱:umich_NLP,代碼行數:33,代碼來源:parse.py

示例2: main

def main():
	try:
		sentences = sys.stdin.readlines()
		model_file = sys.argv[1]
	except:
		raise ValueError('''Usage: cat <file of sentences> | python parse.py <model_file>
		or, python parse.py <model_file>, type sentences and hit Ctrl+d''')
	
	if not os.path.isfile(model_file):
		raise ValueError('cant find the model file')
	
	# scrub list / remove line breaks
	sentences = [sent.rstrip() for sent in sentences]

	# generate dependency graph object from sentences
	depgraphs = [DependencyGraph.from_sentence(sent) for sent in sentences]

	# load model and parse
	tp = TransitionParser.load(model_file)
	parsed = tp.parse(depgraphs)
	
	# print to stdout. 
	# can cat this to a conll file for viewing with MaltEval
	for p in parsed:
		print(p.to_conll(10).encode('utf-8'))
	
	return
開發者ID:devintjones,項目名稱:NLPhw,代碼行數:27,代碼來源:parse.py

示例3: evaluate_parse

def evaluate_parse(partIdx):
  if partIdx == 3:
    print 'Evaluating your swedish model ... '
    testdata = dataset.get_swedish_test_corpus().parsed_sents()
    if not os.path.exists('./swedish.model'):
      print 'No model. Please save your model as swedish.model at current directory before submission.'
      sys.exit(0)
    tp = TransitionParser.load('swedish.model')
    parsed = tp.parse(testdata)
    ev = DependencyEvaluator(testdata, parsed)
    uas, las = ev.eval()
    print 'UAS:',uas
    print 'LAS:',las
    swed_score = (min(las, 0.7) / 0.7) ** 2
    return swed_score
  
  if partIdx == 1:
    print 'Evaluating your english model ... '
    testdata = dataset.get_english_test_corpus().parsed_sents()
    if not os.path.exists('./english.model'):
      print 'No model. Please save your model as english.model at current directory before submission.'
      sys.exit(0)
    tp = TransitionParser.load('english.model')
    parsed = tp.parse(testdata)
    ev = DependencyEvaluator(testdata, parsed)
    uas, las = ev.eval()
    print 'UAS:',uas
    print 'LAS:',las
    eng_score = (min(las, 0.7) / 0.7) ** 2
    return eng_score
  
  if partIdx == 2:
    print 'Evaluating your danish model ... '
    testdata = dataset.get_danish_test_corpus().parsed_sents()
    if not os.path.exists('./danish.model'):
      print 'No model. Please save your model danish.model at current directory before submission.'
      sys.exit(0)
    tp = TransitionParser.load('danish.model')
    parsed = tp.parse(testdata)
    ev = DependencyEvaluator(testdata, parsed)
    uas, las = ev.eval()
    print 'UAS:',uas
    print 'LAS:',las
    dan_score = (min(las, 0.7) / 0.7) ** 2
    return dan_score
開發者ID:dougc333,項目名稱:TestCode,代碼行數:45,代碼來源:submit.py

示例4: parse

def parse(argv):
    if len(argv) != 2:
	sys.exit( "python parse.py language.model") 
#    data = dataset.get_english_train_corpus().parsed_sents()
#    random.seed(1234)
#    subdata = random.sample(data, 200)
    language_model = argv[1]
    try:
	sentences = sys.stdin.readlines()
	for i,sentence in enumerate(sentences):
            dg = DependencyGraph.from_sentence(sentence)
            tp = TransitionParser.load(language_model)
            parsed = tp.parse([dg])
            print parsed[0].to_conll(10).encode('utf-8')
#	 tp = TransitionParser(Transition, FeatureExtractor)
#        tp.train(subdata)
#        tp.save('english.model')
#        testdata = dataset.get_swedish_test_corpus().parsed_sents()
#        tp = TransitionParser.load('english.model')

#        parsed = tp.parse(testdata)
	    #open new file for write on first sentence
	    if i == 0:
	    	with open('test.conll', 'w') as f:
                    for p in parsed:
                        f.write(p.to_conll(10).encode('utf-8'))
                        f.write('\n')
	    #append for rest sentences
	    else:
        	with open('test.conll', 'a') as f:
                    for p in parsed:
                        f.write(p.to_conll(10).encode('utf-8'))
                        f.write('\n')
        
#        ev = DependencyEvaluator(testdata, parsed)
#        print "UAS: {} \nLAS: {}".format(*ev.eval())

    except NotImplementedError:
        print """
開發者ID:actondong,項目名稱:NLP,代碼行數:39,代碼來源:parse.py

示例5: train_model

def train_model(lang,training_set='train'):
	# load and sample data
	data = get_data(lang,dataset=training_set).parsed_sents()
	if len(data) >200:
		random.seed(1234)
		subdata = random.sample(data, 200)
	else:
		subdata = data

	# train model and save
	tp = TransitionParser(Transition, FeatureExtractor)
	tp.train(subdata)
	tp.save('{0}.model'.format(lang))


	# test performance on new data
	if lang != 'english':
		testdata = get_data(lang,dataset='test').parsed_sents()
	
	# english test data not available
	# so find a subset of training data 
	# that is disjoint from data used for training 
	else:
		not_in_training = [sent for sent in data if sent not in subdata]
		testdata = random.sample(not_in_training,200)

	parsed = tp.parse(testdata)

	ev = DependencyEvaluator(testdata, parsed)

	# store and print results
	with open('results.txt','a') as results_file:
		results_file.write('{0} model:\n'.format(lang))
		results_file.write("UAS: {} \nLAS: {}\n".format(*ev.eval()))
	print '{0} model:\n'.format(lang)
	print "UAS: {} \nLAS: {}\n".format(*ev.eval())
	return ev.eval()[1]
開發者ID:devintjones,項目名稱:NLPhw,代碼行數:37,代碼來源:train_models.py

示例6: TransitionParser

from providedcode.transitionparser import TransitionParser
from providedcode.evaluate import DependencyEvaluator
from featureextractor import FeatureExtractor
from transition import Transition
from providedcode.dependencygraph import DependencyGraph

if __name__ == '__main__':
    # data = dataset.get_swedish_train_corpus().parsed_sents()
    # data = dataset.get_english_train_corpus().parsed_sents()
    # data = dataset.get_dutch_train_corpus().parsed_sents()
    data = dataset.get_danish_train_corpus().parsed_sents()
    random.seed(1234)
    subdata = random.sample(data, 200)

    try:
        tp = TransitionParser(Transition, FeatureExtractor)
        tp.train(subdata)
        # tp.save('swedish.model')
        # tp.save('english.model')
        tp.save('danish.model')

        # testdata = dataset.get_swedish_test_corpus().parsed_sents()
        testdata = dataset.get_danish_test_corpus().parsed_sents()
        # tp = TransitionParser.load('badfeatures.model')
        # testdata = dataset.get_english_test_corpus().parsed_sents()
        # tp = TransitionParser.load('english.model')

        parsed = tp.parse(testdata)

        with open('test.conll', 'w') as f:
            for p in parsed:
開發者ID:Alexoner,項目名稱:mooc,代碼行數:31,代碼來源:test.py

示例7:

import sys
from providedcode.transitionparser import TransitionParser
from providedcode.dependencygraph import DependencyGraph

if __name__ == '__main__':
    sentences = sys.stdin.readlines()
    tp = TransitionParser.load(sys.argv[1])
    for sentence in sentences:
        dg = DependencyGraph.from_sentence(sentence) 
        parsed = tp.parse([dg])
        print parsed[0].to_conll(10).encode('utf-8')
        #print '\n'
開發者ID:adamsachs,項目名稱:NLP,代碼行數:12,代碼來源:parse.py

示例8: sentences

from providedcode.dependencygraph import DependencyGraph
from providedcode import dataset
from providedcode.transitionparser import TransitionParser
from providedcode.evaluate import DependencyEvaluator
from featureextractor import FeatureExtractor
from transition import Transition
import sys

if __name__ == "__main__":
    try:
        # parsing arbitrary sentences (english):
        fromInput = "".join(sys.stdin.readlines())
        # print fromInput
        sentence = DependencyGraph.from_sentence(fromInput)

        tp = TransitionParser.load("english.model")
        parsed = tp.parse([sentence])
        print parsed[0].to_conll(10).encode("utf-8")
    except NotImplementedError:
        print """
        This file is currently broken! We removed the implementation of Transition
        (in transition.py), which tells the transitionparser how to go from one
        Configuration to another Configuration. This is an essential part of the
        arc-eager dependency parsing algorithm, so you should probably fix that :)

        The algorithm is described in great detail here:
            http://aclweb.org/anthology//C/C12/C12-1059.pdf

        We also haven't actually implemented most of the features for for the
        support vector machine (in featureextractor.py), so as you might expect the
        evaluator is going to give you somewhat bad results...
開發者ID:dragomirradev,項目名稱:Coursera,代碼行數:31,代碼來源:parse.py

示例9: DependencyGraphs

if __name__ == '__main__':
    # 'data' is parsed sentences converted into Dependency Graph objects.
    model_dict = {
            'english' : ('english.model', dataset.get_english_train_corpus, dataset.get_english_test_corpus),
            'danish' : ('danish.model', dataset.get_danish_train_corpus, dataset.get_danish_test_corpus),
            'swedish' : ('swedish.model', dataset.get_swedish_train_corpus, dataset.get_swedish_test_corpus)
    }
    for model_type, model_tuple in model_dict.iteritems():
        model, data, testdata = model_tuple[0], model_tuple[1]().parsed_sents(), model_tuple[2]().parsed_sents()

        random.seed(1234)
        subdata = random.sample(data, 200)  # 200 randomly selected DependencyGraphs(sentences) for model training.

        try:
            tp = TransitionParser(Transition, FeatureExtractor)
            tp.train(subdata)   # train with 200 randomly selected dependency graphs(sentences).
            tp.save(model)  # save the trained model.

            tp = TransitionParser.load(model)   # load the trained model for parsing.

            parsed = tp.parse(testdata) # parse the test data

            with open('test.conll', 'w') as f:
                for p in parsed:
                    f.write(p.to_conll(10).encode('utf-8'))
                    f.write('\n')

            # evaluate the test parse result here...
            ev = DependencyEvaluator(testdata, parsed)
            print 'Model: {}'.format(model_type)
開發者ID:beaglebagel,項目名稱:mooc,代碼行數:30,代碼來源:test.py

示例10: TransitionParser

from providedcode.evaluate import DependencyEvaluator
from featureextractor import FeatureExtractor
from transition import Transition

if __name__ == "__main__":
    data = dataset.get_swedish_train_corpus().parsed_sents()
    random.seed(1234)
    subdata = random.sample(data, 200)

    try:
        # tp = TransitionParser(Transition, FeatureExtractor)
        # tp.train(subdata)
        # tp.save('swedish.model')

        testdata = dataset.get_swedish_test_corpus().parsed_sents()
        tp = TransitionParser.load("badfeatures.model")

        parsed = tp.parse(testdata)

        with open("test.conll", "w") as f:
            for p in parsed:
                f.write(p.to_conll(10).encode("utf-8"))
                f.write("\n")

        ev = DependencyEvaluator(testdata, parsed)
        print "LAS: {} \nUAS: {}".format(*ev.eval())

        # parsing arbitrary sentences (english):
        # sentence = DependencyGraph.from_sentence('Hi, this is a test')

        # tp = TransitionParser.load('english.model')
開發者ID:romek,項目名稱:coursera-nlp,代碼行數:31,代碼來源:test.py

示例11: MODEL

    subdata = random.sample(data, 200) # use this subdata for bad features and swedish

    # NEED DANISH AND ENGLISH
    data_e = dataset.get_english_train_corpus().parsed_sents()
    random.seed(1234)
    subdata_e = random.sample(data_e, 200)

    data_d = dataset.get_danish_train_corpus().parsed_sents()
    random.seed(1234)
    subdata_d = random.sample(data_d, 200)

    try:
        # BAD FEATURES MODEL (SWEDISH DATA)
        print "Starting Bad Features"
        testdata = dataset.get_swedish_test_corpus().parsed_sents()
        tp = TransitionParser.load('badfeatures.model')

        parsed = tp.parse(testdata)

        with open('test.conll', 'w') as f:
            for p in parsed:
                f.write(p.to_conll(10).encode('utf-8'))
                f.write('\n')

        ev = DependencyEvaluator(testdata, parsed)
        print "Bad Features Results"
        print "UAS: {} \nLAS: {}".format(*ev.eval())
        t1 = time.time()
        print "Time: "+str(t1 - t0) + '\n'

        # SWEDISH FEATURE MODELS
開發者ID:JFulgoni,項目名稱:Natural-Language-Processing,代碼行數:31,代碼來源:test.py

示例12: TransitionParser

from transition import Transition

if __name__ == '__main__':
    #data = dataset.get_swedish_train_corpus().parsed_sents()
    data = dataset.get_english_train_corpus().parsed_sents()
    #data = dataset.get_danish_train_corpus().parsed_sents()
    random.seed(1234)
    subdata = random.sample(data, 200)
    
    # For Swedish to get 200 projectives
    #subdata = random.sample(data, 223)
    
    # For Danish to get 200 projectives
    #subdata = random.sample(data, 236)
    try:
        tp = TransitionParser(Transition, FeatureExtractor)
        tp.train(subdata)
        #tp.save('swedish.model')
        #tp.save('english.model')
        #tp.save('danish.model')
        
        #testdata = dataset.get_swedish_test_corpus().parsed_sents()
        testdata = dataset.get_english_dev_corpus().parsed_sents()
        #testdata = dataset.get_danish_test_corpus().parsed_sents()

        #tp = TransitionParser.load('badfeatures.model')

        parsed = tp.parse(testdata)

        with open('test.conll', 'w') as f:
            for p in parsed:
開發者ID:vshetty2410,項目名稱:COMS4705,代碼行數:31,代碼來源:test.py

示例13: TransitionParser

from transition import Transition

if __name__ == '__main__':
    data = dataset.get_swedish_train_corpus().parsed_sents()

    # data = dataset.get_english_test_corpus().parsed_sents()
    # data = dataset.get_danish_train_corpus().parsed_sents()

    random.seed(1234)
    subdata = random.sample(data, 200)




    try:
        tp = TransitionParser(Transition, FeatureExtractor)
        tp.train(subdata)
        tp.save('swedish.model')
        # tp.save('english.model')
        # tp.save('danish.model')

        testdata = dataset.get_swedish_test_corpus().parsed_sents()
        #tp = TransitionParser.load('badfeatures.model')

        parsed = tp.parse(testdata)

        with open('test.conll', 'w') as f:
            for p in parsed:
                f.write(p.to_conll(10).encode('utf-8'))
                f.write('\n')
開發者ID:Xochitlxie,項目名稱:EECS595-NLP,代碼行數:30,代碼來源:test.py

示例14: handle_input

def handle_input(input_file, model_file):
    tp = TransitionParser.load(model_file)
    for line in input_file:
        sentence = DependencyGraph.from_sentence(line)
        parsed = tp.parse([sentence])
        print parsed[0].to_conll(10).encode('utf-8')
開發者ID:behappycc,項目名稱:nlp-coursera,代碼行數:6,代碼來源:parse.py

示例15: TransitionParser

    scoreWeight = {'swedish': 25.,
                   'danish': 25.,
                   'english': 50.}
    totalPoints = 0
    for testName in tests.keys():
        data = tests[testName]().parsed_sents()
        data_1h = data[0:(len(data)/2)]
        data_2h = data[(len(data)/2):-1]

        random.seed(99999)
        traindata = random.sample(data_1h, 200)
        testdata = random.sample(data_2h, 800)

        try:
            print "Training {0} model...".format(testName)
            tp = TransitionParser(Transition, MyFeatureExtractor)
            tp.train(traindata)
            tp.save(testName + ".model")

            print "Testing {0} model...".format(testName)
            parsed = tp.parse(testdata)

#            with open('test.conll', 'w') as f:
#                for p in parsed:
#                    f.write(p.to_conll(10).encode('utf-8'))
#                    f.write('\n')

            ev = DependencyEvaluator(testdata, parsed)
            print "Test Results For: {0}".format(testName)
            (uas, las) = ev.eval()
            points = scoreWeight[testName] * (min(0.7, las)/0.7)**2
開發者ID:suttonbm,項目名稱:umich_NLP,代碼行數:31,代碼來源:test.py


注:本文中的providedcode.transitionparser.TransitionParser類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。