本文整理匯總了Python中priorityQueue.PriorityQueue類的典型用法代碼示例。如果您正苦於以下問題:Python PriorityQueue類的具體用法?Python PriorityQueue怎麽用?Python PriorityQueue使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了PriorityQueue類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: singleSourceShortestPath
def singleSourceShortestPath(self, srcID):
assert (srcID >= 0 and srcID < self.n)
# Implement Dijkstra's algorithm
# Input:
# self --> a reference to a MyGraph instance
# srcID: the id of the source vertex.
# Expected Output: (d,pi)
# d --> Map each vertex id v to the distance from srcID
# pi --> Map each reachable vertex id v (except for srcID) to a parent.
# Initialize the priority queue
pq = PriorityQueue(self.n) #create the priority queue
for i in range(0,self.n): # Iterate through all vertex ID
if ( i == srcID): # If ID is srcID
pq.set(i,0.0) # Distance of srcID should be zero
else: # ID is not srcID
pq.set(i, pq.Inf) # Distance should be infinity
d = {} # Initialize the map with distances to nodes
pi = {} # Initialize the map with parents of vertices
# COMPLETE the Dijkstra code here
return (d,pi)
示例2: color_most_constrained_first
def color_most_constrained_first(graphs, color):
global spills, unspillable, num_unused, used_registers
#print 'starting color_most_constrained_first'
for v in graphs.vertices():
used_registers[v] = set([])
num_unused[v] = len(registers) - len(used_registers[v])
left = set(graphs.vertices()) - set(reserved_registers) - set(registers)
queue = PriorityQueue(left, avail_reg_then_unspill)
while not queue.empty():
v = queue.pop()
if debug:
print 'next to color is ' + v
if v not in color.keys():
c = choose_color(v, color, graphs,False)
color[v] = c
for u in graphs.interferes_with(v):
#if u in graphs.vertices():
queue.update(u)
used_registers[u] |= set([c])
num_unused[u] = len(registers) - len(used_registers[u])
if not is_reg(c):
spills += 1
return color
示例3: solveUCS
def solveUCS(self):
#Initialize priority queue and fill it with the first connecting nodes
pq = PriorityQueue()
for edge in self.graph[self.start]:
pq.push(edge,self.start,edge[1])
#Recurse
path = []
self.rsolveUCS(pq,path)
path.append(self.start)
return path
示例4: dijkstra
def dijkstra(graphObj, startVertex):
pq = PriorityQueue()
for vertex in graphObj.getVertices():
if vertex == startVertex:
pq.insert([0, vertex])
graphObj.verticesList[startVertex].distance = 0
else:
pq.insert([INFINITY, vertex])
while(len(pq.pqueue)):
currentVertex = pq.extractMin()
if len(pq.pqueue) == 1:
break
# print(pq.pqueue, pq.lookup)
for adjNode in graphObj.verticesList[currentVertex[1]].getConnections():
newDistance = graphObj.verticesList[currentVertex[1]].distance + graphObj.verticesList[currentVertex[1]].adjList[adjNode]
if newDistance < graphObj.verticesList[adjNode].distance:
graphObj.verticesList[adjNode].distance = newDistance
graphObj.verticesList[adjNode].predecessor = currentVertex[1]
index = pq.lookup[adjNode]
pq.decreaseKey(index, newDistance)
return graphObj
示例5: __init__
def __init__(self,newsSeedList,socialSeedList,govSeedList):
self.turn = 0
'''
if newsSeedList is not None:
self.newsQueue = PriorityQueue(newsSeedList)
if socialSeedList is not None:
self.socialQueue = PriorityQueue(socialSeedList)
if govSeedList is not None:
self.govQueue = PriorityQueue(govSeedList)
'''
self.newsQueue = PriorityQueue(newsSeedList)
self.socialQueue = PriorityQueue(socialSeedList)
self.govQueue = PriorityQueue(govSeedList)
heapq.heapify(self.newsQueue.queue)
heapq.heapify(self.socialQueue.queue)
heapq.heapify(self.govQueue.queue)
示例6: __init__
def __init__(self, app, length, fps, synchronous):
self.__app = app
self.__events = PriorityQueue()
self.__spf = 1/fps # seconds per frame
self.__frame = 0
self.__frameTime = -self.__spf
self.__length = length
self.__synchronous = synchronous
示例7: prims
def prims(graphObj, start):
pq = PriorityQueue()
for vertex in graphObj.verticesList:
if vertex == start:
g.verticesList[vertex].distance = 0
pq.insert([0, vertex])
continue
g.verticesList[vertex].distance = INFINITY
pq.insert([INFINITY, vertex])
while(len(pq.pqueue)):
currentVertex = pq.extractMin()
if len(pq.pqueue) == 1:
return
for adjNode in graphObj.verticesList[currentVertex[1]].getConnections():
if adjNode in pq.lookup(adjNode):
newDistance = graphObj.verticesList[currentVertex[1]].getCost(adjNode)
if newDistance < graphObj.verticesList[adjNode].distance:
graphObj.verticesList[adjNode].distance = newDistance
graphObj.verticesList[adjNode].predecessor = currentVertex[1]
return graphObj
示例8: prim
def prim(aGraph, startVertex):
# create a priority queue that uses distance as the value to determine priority and thus its position
# use the distance to the vertex as the priority because while exploring the next vertex, want to explore the vertex that has the smallest distance
# decreaseKey method used when the distance to a vertex that is already in the queue is reduced, and thus moves that vertex toward the front of the queue.
pQueue = PriorityQueue()
# initialize the state of the graph
for vertex in aGraph:
# initialally all vertices values are = infinity (sys.maxint) because we assume the greatest value and then update appropiately
vertex.setDistance(sys.maxsize)
vertex.setPred(None)
# distance represents distance from the startVertex, trivially 0 for the startVertex
startVertex.setDistance(0)
# key value pair
# key is distance and vertex is the value
pQueue.buildHeap([ (vertex.getDistance(), vertex) for vertex in aGraph ])
while not pQueue.isEmpty():
currentVertex = pQueue.delMin()
# iterate over the currentVertex's edges
for nextVertex in currentVertex.getConnections():
# calculate the weight from currentVertex to nextVertex
newCost = currentVertex.getWeight(nextVertex)
# found a shorter path
# node is not considered to be part of the spanning tree until it is removed from the priority queue.
# nextVertex in pQueue means that vertex is not yet in the spanning tree so it is safe to add (ensures an acyclic graph)
if nextVertex in pQueue and newCost< nextVertex.getDistance():
# assign the predecessor appropiately
nextVertex.setPred(currentVertex)
# set a new distance on the nextVertex
nextVertex.setDistance(newCost)
# update the priorityQueue with the correct values
pQueue.decreaseKey(nextVertex, newCost)
示例9: dijkstra
def dijkstra(aGraph, startVertex):
# create a priority queue that uses distance as the value to determine priority and thus its position
# use the distance to the vertex as the priority because while exploring the next vertex, want to explore the vertex that has the smallest distance
# decreaseKey method used when the distance to a vertex that is already in the queue is reduced, and thus moves that vertex toward the front of the queue.
pQueue = PriorityQueue()
# distance represents distance from the startVertex, trivially 0 for the startVertex
# initialally all vertices values are = infinity (sys.maxint) because we assume the greatest value and then update appropiately
startVertex.setDistance(0)
# key value pair
# key is distance and vertex is the value
pQueue.buildHeap([ (vertex.getDistance(), vertex) for vertex in aGraph ])
while not pQueue.isEmpty():
currentVertex = pQueue.delMin()
# iterate over the currentVertex's edges
for nextVertex in currentVertex.getConnections():
# distance of current vertex and the weight of it's edges
newDistance = currentVertex.getDistance() + currentVertex.getWeight(nextVertex)
# found a shorter path
if newDistance < nextVertex.getDistance():
# set a new distance on the nextVertex
nextVertex.setDistance(newDistance)
# assign the predecessor appropiately
nextVertex.setPred(currentVertex)
# update the priorityQueue with the correct values
pQueue.decreaseKey(nextVertex, newDistance)
示例10: solveUCS
def solveUCS(self):
# return ["A","B","C"]
visited = [self.start]
q = PriorityQueue()
if self.start == self.end:
print("Graph already solved! start and end nodes are the same!")
else:
#Build Queue
startNode = self.findNode(self.start)
for child in startNode.children:
print("ADDING",child,"PARENT",startNode.name)
q.put((child,startNode.name,startNode.children[child]))
visited.append(child)
#Recursively solve
path = []
self.rsolveUCS(q,path,visited)
path.append(self.start)
return path
示例11: Dijkstras
def Dijkstras(graph,start):
pq=PriorityQueue()
start.setDistance(0)
pq.buildHeap([(v.getDistance(),v) for v in graph]) # distance is the key in the priority queue
while not pq.isEmpty():
currentvertex=pq.delMin()
for newvertex in currentvertex.getConnections():
newDist=currentvertex.getDistance()+currentvertex.getWeight(newvertex)
if newDist<newvertex.getDistance():
# at the start the distance of all the vertices is set to maximum. That's why the if statement will be executed
newvertex.setDistance(newDist)
newvertex.setPredecessor(currentvertex)
pq.decreaseKey(newvertex,newDist)
示例12: __init__
class Sim:
def __init__(self):
self.q = PriorityQueue()
self.time = 100
self.nodes = {}
self.actors = []
self.done = False
def add_actor(self, actor):
actor.sim = self
self.actors.append(actor)
def at(self, event):
if event.time < self.time:
print "ERROR, time warp"
else:
self.q.put(event, event.time)
def process(self):
while not self.q.empty():
event = self.q.get()
self.time = event.time
try:
(result, actor) = event.process(self)
actor.send(result)
except StopIteration:
pass
print "Sim done"
def prime(self):
for a in self.actors:
a.prime()
def go(self):
self.prime()
self.process()
示例13: prim
def prim(graph,start): # it belongs to the family of greedy algorithms
pq=PriorityQueue()
for v in graph:
v.setDistance(sys.maxsize)
v.setPredecessor(None)
start.setDistance(0)
pq.buildHeap([(v.getDistance(),v) for v in graph])
while not pq.isEmpty()
currentvertex=pq.delMin()
for newvertex in currentvertex.getConnections():
newDist=currentvertex.getWeight(newvertex)
if newDist<newvertex.getDistance() and newvertex in pq:
newvertex.setDistance(newDist)
newvertex.setPredecessor(currentvertex)
pq.decreaseKey(newvertex,newDist)
示例14: representativeNodes
def representativeNodes(G, k, metric=1):
''' Finds the most distinguishable (representative) nodes in graph G greedily.
Takes the most furthest node to the already chosen nodes at each step.
Input: G -- networkx object graph with weighted edges
k -- number of nodes needed
metric -- parameter for differentiating representative qualities
metric == 1 trying to maximize total distance in the chosen set of k nodes
metric == 2 trying to maximize minimal distance between a pair of k nodes
Output:
S -- chosen k nodes
objv -- objective value according to the chosen metric and set of nodes
'''
S = [] # set of chosen nodes
S_dist = PQ() # distances from each node in G to set S according to metric
# initialize S with furthest vertices
try:
u,v,d = max(G.edges(data=True), key=lambda (u, v, d): d['weight'])
except KeyError:
raise KeyError, 'Most likely you have no weight attribute'
S.extend([u,v])
# compute distances from each node in G to S
for v in G.nodes():
if v not in S: # calculate only for nodes in G
if metric == 1:
S_dist.add_task(v, - _sumDist(G, S, v)) # take minus to pop the maximum value from priority queue
elif metric == 2:
S_dist.add_task(v, - _minDist(G, S, v)) # take minus to pop the maximum value from priority queue
# add new nodes to the set greedily
while len(S) < k:
u, priority = S_dist.pop_item() # find maximum value of distance to set S
S.append(u) # append that node to S
# only increase distance for nodes that are connected to u
for v in G[u].keys():
if v not in S: # add only remained nodes
[priority, count, task] = S_dist.entry_finder[v] # finds distance for the previous step
try:
if metric == 1:
S_dist.add_task(v, priority-G[u][v]['weight']) # adds distance to the new member of S
elif metric == 2:
S_dist.add_task(v, max(priority, -G[u][v]['weight'])) # update min distance to the set S
except:
raise u,v, "These are vertices that caused the problem"
# extract objective value of the chosen set
if metric == 1:
objv = 0
for u in S:
objv += _sumDist(G, S, u)
elif metric == 2:
objv = float('Inf')
for u in S:
objv = min(objv, _minDist(G, S, u))
return S, objv
示例15: degreeHeuristic
def degreeHeuristic(G, k, p=.01):
''' Finds initial set of nodes to propagate in Independent Cascade model (with priority queue)
Input: G -- networkx graph object
k -- number of nodes needed
p -- propagation probability
Output:
S -- chosen k nodes
'''
S = []
d = PQ()
for u in G:
degree = sum([G[u][v]['weight'] for v in G[u]])
# degree = len(G[u])
d.add_task(u, -degree)
for i in range(k):
u, priority = d.pop_item()
S.append(u)
return S