本文整理匯總了Python中photutils.CircularAperture.plot方法的典型用法代碼示例。如果您正苦於以下問題:Python CircularAperture.plot方法的具體用法?Python CircularAperture.plot怎麽用?Python CircularAperture.plot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類photutils.CircularAperture
的用法示例。
在下文中一共展示了CircularAperture.plot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_peaks
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
def plot_peaks(box, x_peaks, y_peaks, radius=None, title=None, vmin=None, vmax=None):
"""
This function plots the data with peaks marked ...
:param box:
:param x_peaks:
:param y_peaks:
:return:
"""
# Determine the maximum value in the box and the minium value for plotting
if vmin is None: vmin = max(np.nanmin(box), 0.)
if vmax is None: vmax = 0.5 * (np.nanmax(box) + vmin)
# Set the normalization
norm = ImageNormalize(stretch=SqrtStretch())
# Make the plot
plt.figure(figsize=(8,2.5))
plt.imshow(box, origin='lower', norm=norm, interpolation='nearest', vmin=vmin, vmax=vmax, cmap="viridis")
if radius is None: plt.plot(x_peaks, y_peaks, ls='none', color='white', marker='+', ms=40, lw=10, mew=4)
else:
positions = (x_peaks, y_peaks)
apertures = CircularAperture(positions, r=radius)
apertures.plot(color='green', lw=1.5, alpha=0.5)
plt.xlim(0, box.shape[1]-1)
plt.ylim(0, box.shape[0]-1)
if title is not None: plt.title(title)
plt.show()
示例2: plot_light_curves
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
def plot_light_curves(diff_cube, unique_extracted_objects):
frame_data = [i for i in range(len(diff_cube))]
colors = [(random.uniform(0.5, 1),random.uniform(0.5, 1),random.uniform(0.5,1)) for i in range(len(unique_extracted_objects))]
plt.figure(figsize=(20,10))
for i, extracted_obj in enumerate(unique_extracted_objects):
ap_data=[]
plt.figure(i, figsize=(10, 12))
for frame in diff_cube:
diff_cube_test = frame.copy()
flux, fluxerr, flag = sep.sum_ellipse(diff_cube_test, x=extracted_obj[0], y=extracted_obj[1], a=extracted_obj[2], b=extracted_obj[3], theta=extracted_obj[4])
#flux /= diff_cube_test.sum()
ap_data.append(flux)
plt.ylim((0,800))
plt.plot(frame_data, ap_data, '-o', color=colors[i],linewidth=5.0, )
plt.show()
plt.figure(2, figsize=(10, 12))
plt.imshow(diff_cube[1], cmap='gray', vmin=1, vmax=12)
plt.colorbar()
for i, extracted_obj in enumerate(unique_extracted_objects):
positions = (extracted_obj[0], extracted_obj[1])
apertures = CircularAperture(positions, r=5.)
apertures.plot(color=colors[i], linewidth=10.0, lw=2.5, alpha=0.5)
示例3: plot
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
def plot(sources, data, path):
positions = (sources['xcentroid'], sources['ycentroid'])
apertures = CircularAperture(positions, r=4.)
norm = ImageNormalize(stretch=SqrtStretch())
plt.imshow(data, cmap='Greys', origin='lower', norm=norm)
apertures.plot(color='blue', lw=1.5, alpha=0.5)
plt.savefig(path)
示例4: plot_light_curves
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
def plot_light_curves(diff_cube, unique_extracted_objects):
# The diff_cube has to be byte swapped BEFORE being sent as parameter (diff_cube.byteswap(True).newbyteorder()), otherwise the method is not goint to work. Unique_extracted_objects only work for elliptic-shapped apertures
# We get the number of frames from the cube
frame_data = [i for i in range(len(diff_cube))]
# Random colours array
colours = [
(random.uniform(0.5, 1), random.uniform(0.5, 1), random.uniform(0.5, 1))
for i in range(len(unique_extracted_objects))
]
maxVal = 0
minVal = float("inf")
plt.figure(2, figsize=(10, 12))
# Bonus: Show the image with the sources on the same colour than the plots.
if len(diff_cube) == 1:
plt.imshow(diff_cube[0], cmap="gray", vmin=1, vmax=12)
else:
plt.imshow(diff_cube[1], cmap="gray", vmin=1, vmax=12)
plt.colorbar()
for i, extracted_obj in enumerate(unique_extracted_objects):
positions = (extracted_obj[0], extracted_obj[1])
apertures = CircularAperture(positions, r=5.0)
apertures.plot(color=colours[i], linewidth=10.0, lw=2.5, alpha=0.5)
# For every object we are going to calculate the aperture
plt.figure(1, figsize=(20, 12))
for i, extracted_obj in enumerate(unique_extracted_objects):
ap_data = []
# The standard size of each independent figure
# plt.figure(i, figsize=(10, 12))
# For every frame...
for frame in diff_cube:
diff_cube_test = frame.copy()
# The parameters passed in order are x, y, a, b and theta
flux, fluxerr, flag = sep.sum_ellipse(
diff_cube_test,
x=extracted_obj[0],
y=extracted_obj[1],
a=extracted_obj[2],
b=extracted_obj[3],
theta=extracted_obj[4],
)
ap_data.append(flux)
maxVal = np.maximum(maxVal, np.max(ap_data))
minVal = np.minimum(minVal, np.min(ap_data))
# Hard-coded value!!! ALERT!!!
# Plot every curve as a dotted line with the points visible
plt.plot(frame_data, ap_data, "-o", color=colours[i], linewidth=5.0)
plt.ylim((minVal * 1.1, maxVal * 0.9))
# Voila
plt.show()
示例5: show_image
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
def show_image(self,sourceRA,sourceDEC,refRA,refDEC):
print('RED circle is the cepheid. WHITE circle is the reference object(s).')
print('Add more reference stars by defining ref1aper = blahblahbelow, and ref1aper.plot(etc...)')
#aper_annulus = CircularAnnulus((sourceRA, sourceDEC), r_in=6., r_out = 8.)
apertures = CircularAperture((self.worldcoord.wcs_world2pix(sourceRA,sourceDEC,0)), r=6)
ref1aper = CircularAperture((self.worldcoord.wcs_world2pix(refRA,refDEC,0)), r=6)
#ref2aper = CircularAperture((worldcoord.wcs_world2pix(ref2RA,ref2DEC,0)), r=7)
#ref3aper = CircularAperture((worldcoord.wcs_world2pix(ref3RA,ref3DEC,0)), r=3.5)
#darkaper = CircularAperture((worldcoord.wcs_world2pix(darkRA,darkDEC,0)), r=3.5)
fig = plt.figure()
fig.add_subplot(111, projection = self.worldcoord)
plt.imshow(self.stardata,origin='lower', cmap='Spectral')
apertures.plot(color='red',lw=1.5, alpha=0.5)
ref1aper.plot(color='white', lw=2.5, alpha=0.5)
示例6: starbright
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
def starbright(fnstar,fnflat,istar,axs,fg):
#%% load data
data = meanstack(fnstar,100)[0]
#%% flat field
flatnorm = readflat(fnflat,fnstar)
data = (data/flatnorm).round().astype(data.dtype)
#%% background
mean, median, std = sigma_clipped_stats(data, sigma=3.0)
rfact=data.shape[0]//40
cfact=data.shape[1]//40
bg = Background(data,(rfact,cfact),interp_order=1, sigclip_sigma=3)
# http://docs.astropy.org/en/stable/units/#module-astropy.units
#dataphot = (data - bg.background)*u.ph/(1e-4*u.m**2 * u.s * u.sr)
# data = (data-0.97*data.min()/bg.background.min()*bg.background) * u.ph/(u.cm**2 * u.s * u.sr)
data = data* u.ph/(u.cm**2 * u.s * u.sr)
#%% source extraction
sources = daofind(data, fwhm=3.0, threshold=5*std)
#%% star identification and quantification
XY = column_stack((sources['xcentroid'], sources['ycentroid']))
apertures = CircularAperture(XY, r=4.)
norm = ImageNormalize(stretch=SqrtStretch())
flux = apertures.do_photometry(data,effective_gain=camgain)[0]
#%% plots
fg.suptitle('{}'.format(fnflat.parent),fontsize='x-large')
hi = axs[-3].imshow(flatnorm,interpolation='none',origin='lower')
fg.colorbar(hi,ax=axs[-3])
axs[-3].set_title('flatfield {}'.format(fnflat.name))
hi = axs[-2].imshow(bg.background,interpolation='none',origin='lower')
fg.colorbar(hi,ax=axs[-2])
axs[-2].set_title('background {}'.format(fnstar.name))
hi = axs[-1].imshow(data.value,
cmap='Greys', origin='lower', norm=norm,interpolation='none')
fg.colorbar(hi,ax=axs[-1])
for i,xy in enumerate(XY):
axs[-1].text(xy[0],xy[1], str(i),ha='center',va='center',fontsize=16,color='w')
apertures.plot(ax=axs[-1], color='blue', lw=1.5, alpha=0.5)
axs[-1].set_title('star {}'.format(fnstar.name))
return flux[istar]
示例7: process_file
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
def process_file(inpath, file_name, t_constant, sigma, fwhm, r, kernel_size, outpath, plot):
print "Processing " + file_name
hdulist = fits.open(inpath + file_name)
image = hdulist[0].data
if isinstance(sigma, list):
threshold = calc_sigma(image, sigma[0], sigma[1]) * t_constant
else:
threshold = t_constant*sigma
median_out = signal.medfilt(image,kernel_size)
median_sub = np.subtract(image,median_out)
sources = daofind(median_sub, threshold, fwhm)
sources_2 = np.array(sources["id", "xcentroid", "ycentroid", "sharpness", "roundness1", "roundness2", "npix", "sky", "peak", "flux", "mag"])
print_line= (file_name+","+str(sources_2))
base_name = os.path.splitext(file_name)[0]
file = open(outpath + base_name + ".out", "a")
file.write(print_line)
file.close()
positions = (sources['xcentroid'], sources['ycentroid'])
# print positions
apertures = CircularAperture(positions, r)
phot_table = aperture_photometry(median_sub, apertures)
phot_table_2 = np.array(phot_table["aperture_sum", "xcenter", "ycenter"])
print_line= (","+str(phot_table_2)+"\n")
file = open(outpath + base_name + ".out", "a")
file.write(print_line)
file.write("\n")
file.close()
hdulist[0].data = median_sub
file = open(outpath + base_name + ".fits", "w")
hdulist.writeto(file)
file.close()
if plot:
median_sub[median_sub<=0]=0.0001
plt.imshow(median_sub, cmap='gray', origin='lower')
apertures.plot(color='blue', lw=1.5, alpha=0.5)
plt.show()
示例8: find_stars
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
def find_stars(image, plot = False, fwhm = 20.0, threshold=3.):
from astropy.stats import sigma_clipped_stats
mean, median, std = sigma_clipped_stats(image, sigma=3.0)
from photutils import daofind
sources = daofind(image - median, fwhm=fwhm, threshold=threshold*std)
# stars already found accurately, vet_sources will be implemented when working properly
# vet_sources(10.0,10.0)
if plot == True:
# from astropy.visualization import SqrtStretch
# from astropy.visualization.mpl_normalize import ImageNormalize
positions = (sources['xcentroid'], sources['ycentroid'])
apertures = CircularAperture(positions, r=4.)
#norm = ImageNormalize(stretch=SqrtStretch())
#plt.imshow(image, cmap='Greys', origin='lower', norm=norm)
qi.display_image(image)
apertures.plot(color='blue', lw=1.5, alpha=0.5)
return sources
示例9: plot
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
def plot(self,scale='log'):
apertures = CircularAperture([self.locx,self.locy], r=self.r)
z = self.copy()
z -= np.nanmedian(z)
if scale=='log':
z = np.log10(self)
z = ma.masked_invalid(z)
z.mask = z.mask | (z < 0)
z.fill_value = 0
z = z.filled()
imshow2(z)
if self.pixels is not None:
for i,pos in enumerate(self.pixels):
r,c = pos
plt.text(c,r,i,va='center',ha='center',color='Orange')
apertures.plot(color='Lime',lw=1.5,alpha=0.5)
plt.xlabel('Column (pixels)')
plt.ylabel('Row (pixels)')
示例10: try_dao
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
def try_dao(fitsfile, outfile='out.png'):
hdulist = fits.open(fitsfile)
hdu = hdulist[0]
if len(hdu.data.shape) == 3:
data = hdu.data[0]
else:
data = hdu.data
mean, median, std = sigma_clipped_stats(data[800:900, 800:900], sigma=3.0, iters=5)
print(mean, median, std)
#data = hdu.data
sources = daofind(data - median, fwhm=3.0, threshold=5.*std)
print 'Found %i sources' % len(sources)
positions = (sources['xcentroid'], sources['ycentroid'])
apertures = CircularAperture(positions, r=4.)
norm = ImageNormalize(stretch=SqrtStretch(), vmin=2000, vmax=3000)
plt.imshow(data, cmap='Greys', origin='lower', norm=norm)
plt.title('%i Sources from a single all-sky frame' % len(sources))
apertures.plot(color='blue', lw=1.5, alpha=0.5)
plt.savefig(filename=outfile)
示例11: mad_std
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
hdulist = fits.open(inpath+file_name)
image = hdulist[0].data
#image = image.astype(float) - np.median(image)
from photutils import daofind
from astropy.stats import mad_std
bkg_sigma = mad_std(image)
sources = daofind(image, fwhm, threshold*bkg_sigma)
#print_line= (file_name+","+str(sources_2)+"\n")
sources_2 = np.array(sources["id", "xcentroid", "ycentroid", "sharpness", "roundness1", "roundness2", "npix", "sky", "peak", "flux", "mag"])
print_line= (file_name+","+str(sources_2))
file= open(outpath, "a")
file.write(print_line)
file.close()
from photutils import aperture_photometry, CircularAperture
positions = (sources['xcentroid'], sources['ycentroid'])
apertures = CircularAperture(positions, r)
phot_table = aperture_photometry(image, apertures)
phot_table_2 = np.array(phot_table["aperture_sum", "xcenter", "ycenter"])
print_line= (","+str(phot_table_2)+"\n")
file= open(outpath, "a")
file.write(print_line)
file.close()
import matplotlib.pylab as plt
im2 = image
im2[im2<=0]=0.0001
plt.imshow(im2, cmap='gray', origin='lower')
apertures.plot(color='blue', lw=1.5, alpha=0.5)
plt.show()
示例12: init_centroids
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
def init_centroids(first_image_path, master_flat, master_dark, target_centroid,
max_number_stars=10, min_flux=0.2, plots=False):
first_image = np.median([(fits.getdata(path) - master_dark)/master_flat
for path in first_image_path], axis=0)
tophat_kernel = Tophat2DKernel(5)
convolution = convolve_fft(first_image, tophat_kernel, fftn=fft2, ifftn=ifft2)
convolution -= np.median(convolution)
mad = mad_std(convolution)
convolution[convolution < -5*mad] = 0.0
from skimage.filters import threshold_yen
from skimage.measure import label, regionprops
thresh = threshold_yen(convolution)/4 # Use /4 for planet c, /2 for planet b
#thresh = threshold_otsu(convolution)/15
masked = np.ones_like(convolution)
masked[convolution <= thresh] = 0
label_image = label(masked)
plt.figure()
plt.imshow(label_image, origin='lower', cmap=plt.cm.viridis)
plt.show()
# regions = regionprops(label_image, convolution)
regions = regionprops(label_image, first_image)
# reject regions near to edge of detector
buffer_pixels = 50
regions = [region for region in regions
if ((region.weighted_centroid[0] > buffer_pixels and
region.weighted_centroid[0] < label_image.shape[0] - buffer_pixels)
and (region.weighted_centroid[1] > buffer_pixels and
region.weighted_centroid[1] < label_image.shape[1] - buffer_pixels))]
#centroids = [region.weighted_centroid for region in regions]
#intensities = [region.mean_intensity for region in regions]
target_intensity = regions[0].mean_intensity
target_diameter = regions[0].equivalent_diameter
# and region.equivalent_diameter > 0.8 * target_diameter
centroids = [region.weighted_centroid for region in regions
if min_flux * target_intensity < region.mean_intensity]
# intensities = [region.mean_intensity for region in regions
# if min_flux * target_intensity < region.mean_intensity]
# centroids = np.array(centroids)[np.argsort(intensities)[::-1]]
distances = [np.sqrt((target_centroid[0] - d[0])**2 +
(target_centroid[1] - d[1])**2) for d in centroids]
centroids = np.array(centroids)[np.argsort(distances)]
positions = np.vstack([[y for x, y in centroids], [x for x, y in centroids]])
if plots:
apertures = CircularAperture(positions, r=12.)
apertures.plot(color='r', lw=2, alpha=1)
plt.imshow(first_image, vmin=np.percentile(first_image, 0.01),
vmax=np.percentile(first_image, 99.9), cmap=plt.cm.viridis,
origin='lower')
plt.scatter(positions[0, 0], positions[1, 0], s=150, marker='x')
plt.show()
return positions
示例13: fors2_pol_phot
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
#.........這裏部分代碼省略.........
fwhm = np.mean(fwhm)
# Stack both ord and exord sources together
tot_sources = vstack([sources_o,sources_e])
# Store the ordinary and extraordinary beam source images and
# create apertures for aperture photometry
positions = np.swapaxes(np.array((tot_sources['xcentroid'],
tot_sources['ycentroid']),dtype='float'),0,1)
aperture = CircularAperture(positions, r=0.5*apermul*fwhm)
phot_table = aperture_photometry(image_data,aperture)
# Set up arrays of ord and exord source parameters
s_id = np.zeros([len(np.array(phot_table['id']))])
xp = np.zeros([len(s_id)])
yp = np.zeros([len(s_id)])
fluxbgs = np.zeros([len(s_id)])
mean_bg = np.zeros([len(s_id)])
bg_err = np.zeros([len(s_id)])
s_area = []
ann_area = []
for i in range(0,len(np.array(phot_table['id'])),1):
s_id[i] = np.array(phot_table['id'][i])
xpos = np.array(phot_table['xcenter'][i])
ypos = np.array(phot_table['ycenter'][i])
xp[i] = xpos
yp[i] = ypos
s_area.append(np.pi*(0.5*apermul*fwhm)**2)
j = i%2
fluxbgs[i] = (phot_table['aperture_sum'][i] -
aperture.area()*glob_bgm[j])
mean_bg[i] = glob_bgm[j]
bg_err[i] = glob_bgerr[j]
ann_area.append(80*80)
# Create and save the image in z scale and overplot the ordinary and
# extraordinary apertures and local background annuli if applicable
fig = plt.figure()
zscale = ZScaleInterval(image_data)
norm = ImageNormalize(stretch=SqrtStretch(),interval=zscale)
image = plt.imshow(image_data,cmap='gray',origin='lower',norm=norm)
bg_annulus_o = RectangularAnnulus((843,159),w_in=0,w_out=80,h_out=80,
theta=0)
bg_annulus_e = RectangularAnnulus((843,69),w_in=0,w_out=80,h_out=80,
theta=0)
bg_annulus_o.plot(color='skyblue',lw=1.5,alpha=0.5)
bg_annulus_e.plot(color='lightgreen',lw=1.5,alpha=0.5)
for i in range(0,len(np.array(phot_table['id'])),1):
aperture = CircularAperture((xp[i],yp[i]),r=0.5*apermul*fwhm)
if i < int(len(np.array(phot_table['id']))/2):
aperture.plot(color='blue',lw=1.5,alpha=0.5)
else:
aperture.plot(color='green',lw=1.5,alpha=0.5)
plt.xlim(760,920)
plt.ylim(20,210)
plt.title(label[k])
image_fn = folder_path + angle[k] + '_image.png'
fig.savefig(image_fn)
# Write ordinary and extraordinary beams to file following the
# convention angleXXX_ord.txt and angleXXX_exord.txt
orig_stdout = sys.stdout
ord_result_file= folder_path + 'angle' + angle[k] + '_ord.txt'
ordresultf = open(ord_result_file, 'w')
sys.stdout = ordresultf
print("# id, xpix, ypix, fluxbgs, sourcearea, meanbg, bgerr, bgarea")
for i in range(0,int(len(np.array(phot_table['id']))/2),1):
print(i+1,xp[i],yp[i],fluxbgs[i],s_area[i],mean_bg[i],bg_err[i],
ann_area[i])
sys.stdout = orig_stdout
ordresultf.close()
orig_stdout = sys.stdout
exord_result_file = folder_path + 'angle' + angle[k] + '_exord.txt'
exordresultf = open(exord_result_file, 'w')
sys.stdout = exordresultf
print("# id, xpix, ypix, fluxbgs, sourcearea, meanbg, bgerr, bgarea")
for i in range(int(len(np.array(phot_table['id']))/2),len(np.array
(phot_table['id'])),1):
print(i+1-int(len(np.array(phot_table['id']))/2),xp[i],yp[i],
fluxbgs[i],s_area[i],mean_bg[i],bg_err[i],ann_area[i])
sys.stdout = orig_stdout
exordresultf.close()
# Save the number of sources in each beam to a list
numsource.append(int(len(np.array(phot_table['id']))/2))
# Print number of sources per half-wave plate image
for i in range(0,len(numsource),1):
print("No of sources detected at",ang_dec[i],"degrees:",numsource[i])
return 0
示例14: extension
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
def extension(self, extension_idx, threshold='', FWHM=3.0, sigma=3.0, snr=50., plot=False):
'''
A method to run aperatue photometry routines on an individual extension and save the results to the exposure class
Parameters
----------
extension_idx: int
Index of the extension
threshold: float (optional)
The absolute image value above which to select sources
FWHM: float
The full width at half maximum
sigma: float
Number of standard deviations to use for background estimation
snr: float
The signal-to-noise ratio to use in the threshold detection
plot: bool
Plot the field with identified sources circled
Returns
-------
source_list: table
A source list for the image
'''
# Define the data array
data = self.hdulist[extension_idx].data.astype(np.float)
# Extract the header and create a WCS object
hdr = self.hdulist[extension_idx].header
wcs = WCS(hdr)
# Estimate the background and background noise
mean, median, std = sigma_clipped_stats(data, sigma=sigma, iters=5)
# Calculate the detection threshold and FWHM if not provided
if not threshold: threshold = np.mean(detect_threshold(data, snr=snr))
# Print the parameters being used
for p,v in zip(['mean','median','std','threshold','FWHM'],[mean,median,std,threshold,FWHM]): print '{!s:10}: {:.3f}'.format(p,v)
# Subtract background and generate sources list of all detections
sources = daofind(data-median, threshold, FWHM)
# Map RA and Dec to pixels
positions = (sources['xcentroid'], sources['ycentroid'])
skycoords = pixel_to_skycoord(*positions, wcs=wcs)
# Calculate magnitudes at given source positions
apertures = CircularAperture(positions, r=2.)
photometry_table = aperture_photometry(data, apertures)
# 'skycoords' IRCS object is problematic for stacking tables so for now we'll just add the ra and dec
# photometry_table['sky_center'] = skycoords
photometry_table['ra'], photometry_table['dec'] = skycoords.ra, skycoords.dec
# Update data in the exposure object
self.source_table = vstack([self.source_table,photometry_table], join_type='inner')
# Plot the sources
if plot:
norm = ImageNormalize(stretch=SqrtStretch())
plt.imshow(data, cmap='Greys', origin='lower', norm=norm)
apertures.plot(color='blue', lw=1.5, alpha=0.5)
print '{!s:10}: {}'.format('sources',len(sources))
示例15: daogroup
# 需要導入模塊: from photutils import CircularAperture [as 別名]
# 或者: from photutils.CircularAperture import plot [as 別名]
groups = daogroup(intab, crit_separation=2.0*sigma_psf*gaussian_sigma_to_fwhm)
plt.subplot(1, 2, 1)
plt.imshow(image, origin='lower', interpolation='nearest')
plt.title('Simulated data')
plt.xlabel('x-position (pixel units)')
plt.ylabel('y-position (pixel units)')
plt.subplot(1, 2, 2)
for i in range(len(groups)):
for j in range(len(groups[i]['id'])):
# show ids
# plt.text(groups[i]['x_0'][j], groups[i]['y_0'][j],
# str(groups[i]['id'][j]))
aperture = CircularAperture((groups[i]['x_0'][j],
groups[i]['y_0'][j]),
r=sigma_psf*gaussian_sigma_to_fwhm)
aperture.plot(lw=1.5, alpha=0.5)
tab, residual_image = nstar(image-bkg, groups, (5,5),
fitting.LevMarLSQFitter(),
IntegratedGaussianPRF, sigma=2.0)
tab.sort('id')
tab.write('starlist_estimated.html')
plt.imshow(residual_image, origin='lower', interpolation='nearest')
plt.title('Residual')
plt.xlabel('x-position (pixel units)')
plt.ylabel('y-position (pixel units)')
plt.show()