本文整理匯總了Python中parsimony.functions.CombinedFunction類的典型用法代碼示例。如果您正苦於以下問題:Python CombinedFunction類的具體用法?Python CombinedFunction怎麽用?Python CombinedFunction使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了CombinedFunction類的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_smoothed
def test_smoothed(self):
import numpy as np
import parsimony.utils.consts as consts
from parsimony.functions import CombinedFunction
import parsimony.algorithms.proximal as proximal
import parsimony.functions.losses as losses
import parsimony.functions.penalties as penalties
import parsimony.functions.nesterov as nesterov
import parsimony.utils.start_vectors as start_vectors
import parsimony.datasets.simulate.l1_l2_tv as l1_l2_tv
start_vector = start_vectors.RandomStartVector(normalise=True)
np.random.seed(42)
n, p = 75, 100
penalty_start = 0
alpha = 0.9
Sigma = alpha * np.eye(p, p) \
+ (1.0 - alpha) * np.random.randn(p, p)
mean = np.zeros(p)
M = np.random.multivariate_normal(mean, Sigma, n)
e = np.random.randn(n, 1)
beta = start_vector.get_vector(p)
beta[np.abs(beta) < 0.1] = 0.0
l = 0.618
k = 0.0
g = 0.0
mu_min = 0.001 # consts.TOLERANCE
A = np.eye(p)
A = [A, A, A]
snr = 100.0
X, y, beta_star = l1_l2_tv.load(l, k, g, beta, M, e, A, snr=snr)
function = CombinedFunction()
function.add_function(losses.LinearRegression(X, y,
# penalty_start=penalty_start,
mean=False))
A = nesterov.l1.A_from_variables(p, penalty_start=penalty_start)
function.add_penalty(nesterov.l1.L1(l, A=A, mu=mu_min,
penalty_start=penalty_start))
# function.add_prox(penalties.L1(l, penalty_start=penalty_start))
fista = proximal.FISTA(eps=mu_min, max_iter=20000)
beta = fista.run(function, beta)
assert np.linalg.norm(beta - beta_star) < 5e-2
示例2: test_smooth_1D_l2
def test_smooth_1D_l2(self):
from parsimony.functions import CombinedFunction
import parsimony.functions as functions
import parsimony.functions.nesterov.grouptv as grouptv
import parsimony.datasets.simulate.l1_l2_grouptvmu as l1_l2_grouptvmu
import parsimony.utils.weights as weights
np.random.seed(1337)
n, p = 10, 15
shape = (1, 1, p)
l = 0.0
k = 0.1 # Must have some regularisation for all variables.
g = 0.9
start_vector = weights.RandomUniformWeights(normalise=True)
beta = start_vector.get_weights(p)
rects = [[(0, 5)], [(4, 10)], [(13, 15)]]
# 0 [ 5 ] 0
# 1 [ 5 ] 0
# 2 [ 5 ] 0
# 3 [ 5 ] 0
# 4 [ 4 ] 0 / 1
beta[:5, :] = 5.0 # 5 [ 3 ] 1
beta[4, :] = 4.0 # 6 [ 3 ] 1
beta[5:10, :] = 3.0 # 7 [ 3 ] 1
beta[13:15, :] = 7.0 # 8 [ 3 ] 1
# 9 [ 3 ] 1
# 0 [ x ] -
# 1 [ x ] -
# 2 [ x ] -
# 3 [ 7 ] 2
# 4 [ 7 ] 2
alpha = 1.0
Sigma = alpha * np.eye(p, p) \
+ (1.0 - alpha) * np.random.randn(p, p)
mean = np.zeros(p)
M = np.random.multivariate_normal(mean, Sigma, n)
e = np.random.randn(n, 1)
snr = 100.0
A = grouptv.linear_operator_from_rects(rects, shape)
mu_min = 5e-8
X, y, beta_star = l1_l2_grouptvmu.load(l=l, k=k, g=g, beta=beta,
M=M, e=e, A=A, mu=mu_min,
snr=snr)
eps = 1e-5
max_iter = 12000
beta_start = start_vector.get_weights(p)
mus = [5e-2, 5e-4, 5e-6, 5e-8]
fista = FISTA(eps=eps, max_iter=max_iter / len(mus))
beta_parsimony = beta_start
for mu in mus:
function = CombinedFunction()
function.add_loss(functions.losses.LinearRegression(X, y,
mean=False))
function.add_penalty(grouptv.GroupTotalVariation(l=g,
A=A, mu=mu,
penalty_start=0))
function.add_penalty(functions.penalties.L2Squared(l=k,
penalty_start=0))
beta_parsimony = fista.run(function, beta_parsimony)
berr = np.linalg.norm(beta_parsimony - beta_star)
# print "berr:", berr
assert berr < 5e-2
f_parsimony = function.f(beta_parsimony)
f_star = function.f(beta_star)
ferr = abs(f_parsimony - f_star)
# print "ferr:", ferr
assert ferr < 5e-5
示例3: test_smooth_2D_l1
def test_smooth_2D_l1(self):
from parsimony.functions import CombinedFunction
import parsimony.functions as functions
import parsimony.functions.nesterov.grouptv as grouptv
import parsimony.datasets.simulate.l1_l2_grouptvmu as l1_l2_grouptvmu
import parsimony.utils.weights as weights
np.random.seed(1337)
n, p = 10, 18
shape = (1, 3, 6)
l = 0.618
k = 0.0
g = 1.618
start_vector = weights.ZerosWeights()
beta = start_vector.get_weights(p)
rects = [[(0, 1), (0, 3)], [(1, 2), (3, 6)]]
beta = np.reshape(beta, shape[1:])
beta[0:2, 0:4] = 1.0
beta[1:3, 3:6] = 2.0
beta[1, 3] = 1.5
beta = np.reshape(beta, (p, 1))
alpha = 1.0
Sigma = alpha * np.eye(p, p) \
+ (1.0 - alpha) * np.random.randn(p, p)
mean = np.zeros(p)
M = np.random.multivariate_normal(mean, Sigma, n)
e = np.random.randn(n, 1)
snr = 100.0
A = grouptv.linear_operator_from_rects(rects, shape)
mu_min = 5e-8
X, y, beta_star = l1_l2_grouptvmu.load(l=l, k=k, g=g, beta=beta,
M=M, e=e, A=A, mu=mu_min,
snr=snr)
eps = 1e-5
max_iter = 10000
beta_start = start_vector.get_weights(p)
mus = [5e-2, 5e-4, 5e-6, 5e-8]
fista = FISTA(eps=eps, max_iter=max_iter / len(mus))
beta_parsimony = beta_start
for mu in mus:
function = CombinedFunction()
function.add_loss(functions.losses.LinearRegression(X, y,
mean=False))
function.add_penalty(grouptv.GroupTotalVariation(l=g,
A=A, mu=mu,
penalty_start=0))
function.add_prox(functions.penalties.L1(l=l, penalty_start=0))
beta_parsimony = fista.run(function, beta_parsimony)
berr = np.linalg.norm(beta_parsimony - beta_star)
# print "berr:", berr
assert berr < 5e-2
f_parsimony = function.f(beta_parsimony)
f_star = function.f(beta_star)
ferr = abs(f_parsimony - f_star)
# print "ferr:", ferr
assert ferr < 5e-5
示例4: test_combo_overlapping_nonsmooth
def test_combo_overlapping_nonsmooth(self):
import numpy as np
from parsimony.functions import CombinedFunction
import parsimony.algorithms.proximal as proximal
import parsimony.functions as functions
import parsimony.functions.nesterov.gl as gl
import parsimony.datasets.simulate.l1_l2_gl as l1_l2_gl
import parsimony.utils.start_vectors as start_vectors
np.random.seed(42)
# Note that p must be even!
n, p = 25, 30
groups = [range(0, 2 * p / 3), range(p / 3, p)]
weights = [1.5, 0.5]
A = gl.A_from_groups(p, groups=groups, weights=weights)
l = 0.618
k = 1.0 - l
g = 2.718
start_vector = start_vectors.RandomStartVector(normalise=True)
beta = start_vector.get_vector(p)
alpha = 1.0
Sigma = alpha * np.eye(p, p) \
+ (1.0 - alpha) * np.random.randn(p, p)
mean = np.zeros(p)
M = np.random.multivariate_normal(mean, Sigma, n)
e = np.random.randn(n, 1)
snr = 100.0
X, y, beta_star = l1_l2_gl.load(l, k, g, beta, M, e, A, snr=snr)
eps = 1e-8
max_iter = 10000
beta_start = start_vector.get_vector(p)
mus = [5e-0, 5e-2, 5e-4, 5e-6, 5e-8]
fista = proximal.FISTA(eps=eps, max_iter=max_iter / len(mus))
beta_parsimony = beta_start
for mu in mus:
# function = functions.LinearRegressionL1L2GL(X, y, l, k, g,
# A=A, mu=mu,
# penalty_start=0)
function = CombinedFunction()
function.add_function(functions.losses.LinearRegression(X, y,
mean=False))
function.add_penalty(functions.penalties.L2Squared(l=k))
function.add_penalty(gl.GroupLassoOverlap(l=g, A=A, mu=mu,
penalty_start=0))
function.add_prox(functions.penalties.L1(l=l))
beta_parsimony = fista.run(function, beta_parsimony)
berr = np.linalg.norm(beta_parsimony - beta_star)
# print berr
assert berr < 5e-3
f_parsimony = function.f(beta_parsimony)
f_star = function.f(beta_star)
# print abs(f_parsimony - f_star)
assert abs(f_parsimony - f_star) < 5e-6
示例5: test_nonoverlapping_nonsmooth
def test_nonoverlapping_nonsmooth(self):
# Spams: http://spams-devel.gforge.inria.fr/doc-python/doc_spams.pdf
import numpy as np
from parsimony.functions import CombinedFunction
import parsimony.algorithms.proximal as proximal
import parsimony.functions as functions
import parsimony.functions.nesterov.gl as gl
import parsimony.datasets.simulate.l1_l2_gl as l1_l2_gl
import parsimony.utils.start_vectors as start_vectors
np.random.seed(42)
# Note that p must be even!
n, p = 25, 20
groups = [range(0, p / 2), range(p / 2, p)]
# weights = [1.5, 0.5]
A = gl.A_from_groups(p, groups=groups) # , weights=weights)
l = 0.0
k = 0.0
g = 1.0
start_vector = start_vectors.RandomStartVector(normalise=True)
beta = start_vector.get_vector(p)
alpha = 1.0
Sigma = alpha * np.eye(p, p) \
+ (1.0 - alpha) * np.random.randn(p, p)
mean = np.zeros(p)
M = np.random.multivariate_normal(mean, Sigma, n)
e = np.random.randn(n, 1)
snr = 100.0
X, y, beta_star = l1_l2_gl.load(l, k, g, beta, M, e, A, snr=snr)
eps = 1e-8
max_iter = 8500
beta_start = start_vector.get_vector(p)
mus = [5e-2, 5e-4, 5e-6, 5e-8]
fista = proximal.FISTA(eps=eps, max_iter=max_iter / len(mus))
beta_parsimony = beta_start
for mu in mus:
# function = functions.LinearRegressionL1L2GL(X, y, l, k, g,
# A=A, mu=mu,
# penalty_start=0)
function = CombinedFunction()
function.add_function(functions.losses.LinearRegression(X, y,
mean=False))
function.add_penalty(gl.GroupLassoOverlap(l=g, A=A, mu=mu,
penalty_start=0))
beta_parsimony = fista.run(function, beta_parsimony)
try:
import spams
params = {"loss": "square",
"regul": "group-lasso-l2",
"groups": np.array([1] * (p / 2) + [2] * (p / 2),
dtype=np.int32),
"lambda1": g,
"max_it": max_iter,
"tol": eps,
"ista": False,
"numThreads": -1,
}
beta_spams, optim_info = \
spams.fistaFlat(Y=np.asfortranarray(y),
X=np.asfortranarray(X),
W0=np.asfortranarray(beta_start),
return_optim_info=True,
**params)
except ImportError:
beta_spams = np.asarray([[14.01111427],
[35.56508563],
[27.38245962],
[22.39716553],
[5.835744940],
[5.841502910],
[2.172209350],
[32.40227785],
[22.48364756],
[26.48822401],
[0.770391500],
[36.28288883],
[31.14118214],
[7.938279340],
[6.800713150],
[6.862914540],
[11.38161678],
[19.63087584],
[16.15855845],
#.........這裏部分代碼省略.........
示例6: test_nonoverlapping_smooth
def test_nonoverlapping_smooth(self):
# Spams: http://spams-devel.gforge.inria.fr/doc-python/doc_spams.pdf
import numpy as np
from parsimony.functions import CombinedFunction
import parsimony.algorithms.proximal as proximal
import parsimony.functions as functions
import parsimony.functions.nesterov.gl as gl
import parsimony.datasets.simulate.l1_l2_glmu as l1_l2_glmu
import parsimony.utils.start_vectors as start_vectors
np.random.seed(42)
# Note that p must be even!
n, p = 25, 20
groups = [range(0, p / 2), range(p / 2, p)]
# weights = [1.5, 0.5]
A = gl.A_from_groups(p, groups=groups) # , weights=weights)
l = 0.0
k = 0.0
g = 0.9
start_vector = start_vectors.RandomStartVector(normalise=True)
beta = start_vector.get_vector(p)
alpha = 1.0
Sigma = alpha * np.eye(p, p) \
+ (1.0 - alpha) * np.random.randn(p, p)
mean = np.zeros(p)
M = np.random.multivariate_normal(mean, Sigma, n)
e = np.random.randn(n, 1)
snr = 100.0
mu_min = 5e-8
X, y, beta_star = l1_l2_glmu.load(l, k, g, beta, M, e, A,
mu=mu_min, snr=snr)
eps = 1e-8
max_iter = 18000
beta_start = start_vector.get_vector(p)
mus = [5e-0, 5e-2, 5e-4, 5e-6, 5e-8]
fista = proximal.FISTA(eps=eps, max_iter=max_iter / len(mus))
beta_parsimony = beta_start
for mu in mus:
# function = functions.LinearRegressionL1L2GL(X, y, l, k, g,
# A=A, mu=mu,
# penalty_start=0)
function = CombinedFunction()
function.add_function(functions.losses.LinearRegression(X, y,
mean=False))
function.add_penalty(gl.GroupLassoOverlap(l=g, A=A, mu=mu,
penalty_start=0))
beta_parsimony = fista.run(function, beta_parsimony)
try:
import spams
params = {"loss": "square",
"regul": "group-lasso-l2",
"groups": np.array([1] * (p / 2) + [2] * (p / 2),
dtype=np.int32),
"lambda1": g,
"max_it": max_iter,
"tol": eps,
"ista": False,
"numThreads": -1,
}
beta_spams, optim_info = \
spams.fistaFlat(Y=np.asfortranarray(y),
X=np.asfortranarray(X),
W0=np.asfortranarray(beta_start),
return_optim_info=True,
**params)
# print beta_spams
except ImportError:
beta_spams = np.asarray([[15.56784201],
[39.51679274],
[30.42583205],
[24.8816362],
[6.48671072],
[6.48350546],
[2.41477318],
[36.00285723],
[24.98522184],
[29.43128643],
[0.85520539],
[40.31463542],
[34.60084146],
[8.82322513],
[7.55741642],
[7.62364398],
#.........這裏部分代碼省略.........
示例7: test_smoothed
def test_smoothed(self):
import numpy as np
import scipy.sparse
from parsimony.functions import CombinedFunction
import parsimony.algorithms.proximal as proximal
import parsimony.functions.losses as losses
import parsimony.functions.nesterov as nesterov
import parsimony.utils.weights as weights
import parsimony.datasets.simulate.l1_l2_tv as l1_l2_tv
start_vector = weights.RandomUniformWeights(normalise=True)
np.random.seed(42)
n, p = 75, 100
penalty_start = 0
alpha = 0.9
V = np.random.randn(p, p)
Sigma = alpha * np.eye(p, p) \
+ (1.0 - alpha) * np.dot(V.T, V)
mean = np.zeros(p)
M = np.random.multivariate_normal(mean, Sigma, n)
e = np.random.randn(n, 1)
beta = start_vector.get_weights(p)
beta[np.abs(beta) < 0.1] = 0.0
l = 0.618
k = 0.0
g = 0.0
mu_min = 0.001 # consts.TOLERANCE
A = scipy.sparse.eye(p)
# A = np.eye(p)
A = [A, A, A]
snr = 100.0
X, y, beta_star = l1_l2_tv.load(l, k, g, beta, M, e, A, snr=snr)
function = CombinedFunction()
function.add_loss(losses.LinearRegression(X, y, mean=False))
A = nesterov.l1.linear_operator_from_variables(p,
penalty_start=penalty_start)
function.add_penalty(nesterov.l1.L1(l, A=A, mu=mu_min,
penalty_start=penalty_start))
# function.add_prox(penalties.L1(l, penalty_start=penalty_start))
fista = proximal.FISTA(eps=mu_min, max_iter=23500)
beta = fista.run(function, beta)
berr = np.linalg.norm(beta - beta_star)
# print "berr:", berr
# assert berr < 5
assert_less(berr, 5.0, "The found regression vector is not correct.")
# Test proximal operator
function = CombinedFunction()
function.add_loss(losses.LinearRegression(X, y, mean=False))
A = nesterov.l1.linear_operator_from_variables(p,
penalty_start=penalty_start)
function.add_prox(nesterov.l1.L1(l, A=A, mu=mu_min,
penalty_start=penalty_start))
fista = proximal.FISTA(eps=mu_min, max_iter=20000)
beta = fista.run(function, beta)
berr = np.linalg.norm(beta - beta_star)
# print "berr:", berr
# assert berr < 0.1
assert_less(berr, 0.1, "The found regression vector is not correct.")
示例8: test_overlapping_smooth
def test_overlapping_smooth(self):
import numpy as np
from parsimony.functions import CombinedFunction
import parsimony.functions as functions
import parsimony.functions.nesterov.gl as gl
import parsimony.datasets.simulate.l1_l2_glmu as l1_l2_glmu
import parsimony.utils.weights as weights
np.random.seed(314)
# Note that p must be even!
n, p = 25, 30
groups = [list(range(0, 2 * int(p / 3))), list(range(int(p / 3), p))]
group_weights = [1.5, 0.5]
A = gl.linear_operator_from_groups(p, groups=groups,
weights=group_weights)
l = 0.0
k = 0.0
g = 0.9
start_vector = weights.RandomUniformWeights(normalise=True)
beta = start_vector.get_weights(p)
alpha = 1.0
Sigma = alpha * np.eye(p, p) \
+ (1.0 - alpha) * np.random.randn(p, p)
mean = np.zeros(p)
M = np.random.multivariate_normal(mean, Sigma, n)
e = np.random.randn(n, 1)
snr = 100.0
mu_min = 5e-8
X, y, beta_star = l1_l2_glmu.load(l, k, g, beta, M, e, A,
mu=mu_min, snr=snr)
eps = 1e-8
max_iter = 15000
beta_start = start_vector.get_weights(p)
mus = [5e-0, 5e-2, 5e-4, 5e-6, 5e-8]
fista = FISTA(eps=eps, max_iter=max_iter / len(mus))
beta_parsimony = beta_start
for mu in mus:
# function = functions.LinearRegressionL1L2GL(X, y, l, k, g,
# A=A, mu=mu,
# penalty_start=0)
function = CombinedFunction()
function.add_loss(functions.losses.LinearRegression(X, y,
mean=False))
function.add_penalty(gl.GroupLassoOverlap(l=g, A=A, mu=mu,
penalty_start=0))
beta_parsimony = fista.run(function, beta_parsimony)
berr = np.linalg.norm(beta_parsimony - beta_star)
# print berr
assert berr < 5e-2
f_parsimony = function.f(beta_parsimony)
f_star = function.f(beta_star)
# print(abs(f_parsimony - f_star))
assert abs(f_parsimony - f_star) < 5e-6